Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization

被引:0
|
作者
Duy Khuong Nguyen
Tu Bao Ho
机构
[1] Japan Advanced Institute of Science and Technology,University of Engineering and Technology
[2] Vietnam National University,John von Neumann Institute
[3] Vietnam National University,undefined
来源
关键词
Non-negative matrix factorization; Accelerated anti-lopsided algorithm; Cooridinate descent algorithm; Parallel and distributed algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues such as fast algorithms, fully parallel distributed feasibility and limited internal memory. This research designs a fast fully parallel and distributed algorithm using limited internal memory to reach high NMF performance for large datasets. Specially, we propose a flexible accelerated algorithm for NMF with all its L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} regularized variants based on full decomposition, which is a combination of exact line search, greedy coordinate descent, and accelerated search. The proposed algorithm takes advantages of these algorithms to converges linearly at an over-bounded rate (1-μL)(1-μrL)2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\frac{\mu }{L})(1 - \frac{\mu }{rL})^{2r}$$\end{document} in optimizing each factor matrix when fixing the other factor one in the sub-space of passive variables, where r is the number of latent components, and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and L are bounded as 12≤μ≤L≤r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} \le \mu \le L \le r$$\end{document}. In addition, the algorithm can exploit the data sparseness to run on large datasets with limited internal memory of machines, which is is advanced compared to fast block coordinate descent methods and accelerated methods. Our experimental results are highly competitive with seven state-of-the-art methods about three significant aspects of convergence, optimality and average of the iteration numbers.
引用
收藏
页码:307 / 328
页数:21
相关论文
共 50 条
  • [41] DSANLS: Accelerating Distributed Nonnegative Matrix Factorization via Sketching
    Qian, Yuqiu
    Tan, Conghui
    Mamoulis, Nikos
    Cheung, David W.
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 450 - 458
  • [42] Distributional Clustering Using Nonnegative Matrix Factorization
    Zhu, Zhenfeng
    Ye, Yangdong
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4705 - 4711
  • [43] Document clustering using nonnegative matrix factorization/
    Shahnaz, F
    Berry, MW
    Pauca, VP
    Plemmons, RJ
    INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) : 373 - 386
  • [44] DISTRIBUTED ALGORITHMS FOR UNMIXING HYPERSPECTRAL DATA USING NONNEGATIVE MATRIX FACTORIZATION WITH SPARSITY CONSTRAINTS
    Robila, Stefan A.
    Ricart, Daniel
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2156 - 2159
  • [45] Anomaly detection using nonnegative matrix factorization
    Allan, Edward G.
    Horvath, Michael R.
    Kopek, Christopher V.
    Lamb, Brian T.
    Whaples, Thomas S.
    Berry, Michael W.
    SURVEY OF TEXT MINING II: CLUSTERING, CLASSIFICATION, AND RETRIEVAL, 2008, : 203 - +
  • [46] Community discovery using nonnegative matrix factorization
    Wang, Fei
    Li, Tao
    Wang, Xin
    Zhu, Shenghuo
    Ding, Chris
    DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 22 (03) : 493 - 521
  • [47] Community discovery using nonnegative matrix factorization
    Fei Wang
    Tao Li
    Xin Wang
    Shenghuo Zhu
    Chris Ding
    Data Mining and Knowledge Discovery, 2011, 22 : 493 - 521
  • [48] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [49] Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization
    Gillis, Nicolas
    Glineur, Francois
    NEURAL COMPUTATION, 2012, 24 (04) : 1085 - 1105
  • [50] Collaborative Filtering Recommendation Using Nonnegative Matrix Factorization in GPU-Accelerated Spark Platform
    Tang, Bing
    Kang, Linyao
    Zhang, Li
    Guo, Feiyan
    He, Haiwu
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)