Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization

被引:0
|
作者
Duy Khuong Nguyen
Tu Bao Ho
机构
[1] Japan Advanced Institute of Science and Technology,University of Engineering and Technology
[2] Vietnam National University,John von Neumann Institute
[3] Vietnam National University,undefined
来源
关键词
Non-negative matrix factorization; Accelerated anti-lopsided algorithm; Cooridinate descent algorithm; Parallel and distributed algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues such as fast algorithms, fully parallel distributed feasibility and limited internal memory. This research designs a fast fully parallel and distributed algorithm using limited internal memory to reach high NMF performance for large datasets. Specially, we propose a flexible accelerated algorithm for NMF with all its L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} regularized variants based on full decomposition, which is a combination of exact line search, greedy coordinate descent, and accelerated search. The proposed algorithm takes advantages of these algorithms to converges linearly at an over-bounded rate (1-μL)(1-μrL)2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\frac{\mu }{L})(1 - \frac{\mu }{rL})^{2r}$$\end{document} in optimizing each factor matrix when fixing the other factor one in the sub-space of passive variables, where r is the number of latent components, and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and L are bounded as 12≤μ≤L≤r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} \le \mu \le L \le r$$\end{document}. In addition, the algorithm can exploit the data sparseness to run on large datasets with limited internal memory of machines, which is is advanced compared to fast block coordinate descent methods and accelerated methods. Our experimental results are highly competitive with seven state-of-the-art methods about three significant aspects of convergence, optimality and average of the iteration numbers.
引用
收藏
页码:307 / 328
页数:21
相关论文
共 50 条
  • [31] Slope One algorithm based on nonnegative matrix factorization
    Dong L.-Y.
    Jin J.-H.
    Fang Y.-C.
    Wang Y.-Q.
    Li Y.-L.
    Sun M.-H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2019, 53 (07): : 1349 - 1353and1362
  • [32] CASNMF: A Converged Algorithm for symmetrical nonnegative matrix factorization
    Tian, Li-Ping
    Luo, Ping
    Wang, Haiying
    Zheng, Huiru
    Wu, Fang-Xiang
    NEUROCOMPUTING, 2018, 275 : 2031 - 2040
  • [33] A Fast Algorithm for Nonnegative Matrix Factorization and Its Convergence
    Li, Li-Xin
    Wu, Lin
    Zhang, Hui-Sheng
    Wu, Fang-Xiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1855 - 1863
  • [34] HYPERSPECTRAL UNMIXING ALGORITHM BASED ON NONNEGATIVE MATRIX FACTORIZATION
    Bao, Wenxing
    Li, Qin
    Xin, Liping
    Qu, Kewen
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6982 - 6985
  • [35] An alternating projected gradient algorithm for nonnegative matrix factorization
    Lin, Lu
    Liu, Zhong-Yun
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) : 9997 - 10002
  • [36] Jacobi Algorithm For Nonnegative Matrix Factorization With Transform Learning
    Wendt, Herwig
    Fagot, Dylan
    Fevotte, Cedric
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1062 - 1066
  • [37] Efficient algorithm for sparse symmetric nonnegative matrix factorization
    Belachew, Melisew Tefera
    PATTERN RECOGNITION LETTERS, 2019, 125 : 735 - 741
  • [38] Distributed Bayesian matrix factorization with limited communication
    Qin, Xiangju
    Blomstedt, Paul
    Leppaaho, Eemeli
    Parviainen, Pekka
    Kaski, Samuel
    MACHINE LEARNING, 2019, 108 (10) : 1805 - 1830
  • [39] Distributed Bayesian matrix factorization with limited communication
    Xiangju Qin
    Paul Blomstedt
    Eemeli Leppäaho
    Pekka Parviainen
    Samuel Kaski
    Machine Learning, 2019, 108 : 1805 - 1830
  • [40] Image processing using Newton-based algorithm of nonnegative matrix factorization
    Hu, Li-Ying
    Guo, Gong-De
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 956 - 964