Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Algebraic representation of correlation functions in integrable spin chains
    Boos, H.
    Jimbo, M.
    Miwa, T.
    Smirnov, F.
    Takeyama, Y.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1395 - 1428
  • [32] Subdiffusive hydrodynamics of nearly integrable anisotropic spin chains
    De Nardis, Jacopo
    Gopalakrishnan, Sarang
    Vasseur, Romain
    Ware, Brayden
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (34)
  • [33] Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains
    Krajni, Ziga
    Schmidt, Johannes
    Ilievski, Enej
    Prosen, Tomaz
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [34] Algebraic Representation of Correlation Functions in Integrable Spin Chains
    H. Boos
    M. Jimbo
    T. Miwa
    F. Smirnov
    Y. Takeyama
    Annales Henri Poincaré, 2006, 7 : 1395 - 1428
  • [35] Algebraic Construction of Current Operators in Integrable Spin Chains
    Pozsgay, Balazs
    PHYSICAL REVIEW LETTERS, 2020, 125 (07)
  • [36] Bethe/Gauge correspondence for AN spin chains with integrable boundaries
    Wang, Ziwei
    Zhu, Rui-Dong
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (04):
  • [37] SURFACE-ENERGY OF INTEGRABLE QUANTUM SPIN CHAINS
    BATCHELOR, MT
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05): : 761 - 771
  • [38] Energy transport between two integrable spin chains
    Biella, Alberto
    De Luca, Andrea
    Viti, Jacopo
    Rossini, Davide
    Mazza, Leonardo
    Fazio, Rosario
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [39] Conserved charges in the quantum simulation of integrable spin chains
    Maruyoshi, Kazunobu
    Okuda, Takuya
    Pedersen, Juan W.
    Suzuki, Ryo
    Yamazaki, Masahito
    Yoshida, Yutaka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (16)
  • [40] Integrable crosscap states in gl (N) spin chains
    Gombor, Tamas
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):