Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Integrable and superintegrable systems with spin
    Winternitz, Pavel
    Yurdusen, Ismet
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [22] Loschmidt echo of local dynamical processes in integrable and non integrable spin chains
    Sur, Saikat
    Subrahmanyam, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (34)
  • [23] INVARIANT MEASURES FOR INTEGRABLE SPIN CHAINS AND AN INTEGRABLE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Angelopoulos, Yannis
    Killip, Rowan
    Visan, Monica
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 135 - 163
  • [24] Overlaps and fermionic dualities for integrable super spin chains
    Kristjansen, Charlotte
    Muller, Dennis
    Zarembo, Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [25] The magnetocaloric effect in integrable spin-s chains
    Ribeiro, G. A. P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [26] Form factors of integrable Heisenberg (higher) spin chains
    Castro-Alvaredo, O. A.
    Maillet, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7451 - 7471
  • [27] Crosscap States in Integrable Field Theories and Spin Chains
    Caetano, Joao
    Komatsu, Shota
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [28] Overlaps and fermionic dualities for integrable super spin chains
    Charlotte Kristjansen
    Dennis Müller
    Konstantin Zarembo
    Journal of High Energy Physics, 2021
  • [29] Crosscap States in Integrable Field Theories and Spin Chains
    João Caetano
    Shota Komatsu
    Journal of Statistical Physics, 2022, 187
  • [30] Long-range deformations for integrable spin chains
    Bargheer, Till
    Beisert, Niklas
    Loebbert, Florian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)