Reduced invariant sets

被引:0
|
作者
Gerald W. Schwarz
机构
[1] Brandeis University,Department of Mathematics
关键词
20G20; 57S15; Invariant polynomials; reduced; saturated;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a compact Lie group and W a finite-dimensional real K-module. Let X be a K-stable real algebraic subset of W. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}(X)}$$\end{document} denote the ideal of X in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}[W]}$$\end{document} and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}_{K}(X)}$$\end{document} be the ideal generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}(X)^{K}}$$\end{document} . We find necessary conditions and sufficient conditions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}(X) = \mathcal{I}_{K}(X)}}$$\end{document} and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\sqrt{\mathcal{I}_{K}(X)} = \mathcal{I}(X)}}$$\end{document} . We consider analogous questions for actions of complex reductive groups.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 50 条
  • [41] TRANSLATION INVARIANT FAMILIES OF SETS
    MORGAN, JC
    COLLOQUIUM MATHEMATICUM, 1975, 34 (01) : 63 - 68
  • [42] TRANSLATION INVARIANT FAMILIES OF SETS
    MORGAN, JC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A635 - A635
  • [43] ALMOST INVARIANT-SETS
    LOSERT, V
    RINDLER, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (MAR) : 145 - 148
  • [44] INVARIANT-SETS FOR SUBSTITUTION
    NISHIDA, T
    KOBUCHI, Y
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (02) : 168 - 174
  • [45] INVARIANT SETS IN MONKEY SADDLE
    ROD, DL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 368 - &
  • [46] On the computation and bounding of invariant sets
    Benlaoukli, Hichem
    Olaru, Sorin
    2007 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-6, 2007, : 2046 - 2051
  • [47] On the computability of reachable and invariant sets
    Collins, Pieter
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 4187 - 4192
  • [48] MEASURE-INVARIANT SETS
    BLUM, JR
    PATHAK, PK
    ANNALS OF PROBABILITY, 1973, 1 (04): : 590 - 602
  • [49] On invariant sets in Lagrangian graphs
    CUI XiaoJun 1
    2 Mathematisches Institut
    3 ASD
    4 Department of Mathematics
    Science China(Mathematics), 2010, 53 (12) : 3095 - 3098
  • [50] Translation invariant Julia sets
    Boyd, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) : 803 - 812