Reduced invariant sets

被引:0
|
作者
Gerald W. Schwarz
机构
[1] Brandeis University,Department of Mathematics
关键词
20G20; 57S15; Invariant polynomials; reduced; saturated;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a compact Lie group and W a finite-dimensional real K-module. Let X be a K-stable real algebraic subset of W. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}(X)}$$\end{document} denote the ideal of X in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}[W]}$$\end{document} and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}_{K}(X)}$$\end{document} be the ideal generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}(X)^{K}}$$\end{document} . We find necessary conditions and sufficient conditions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}(X) = \mathcal{I}_{K}(X)}}$$\end{document} and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\sqrt{\mathcal{I}_{K}(X)} = \mathcal{I}(X)}}$$\end{document} . We consider analogous questions for actions of complex reductive groups.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 50 条
  • [21] Invariant and stably invariant sets for differential inclusions
    E. A. Panasenko
    E. L. Tonkov
    Proceedings of the Steklov Institute of Mathematics, 2008, 262 : 194 - 212
  • [22] Invariant and Stably Invariant Sets for Differential Inclusions
    Panasenko, E. A.
    Tonkov, E. L.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 262 (01) : 194 - 212
  • [23] ON INVARIANT SETS AND INVARIANT MANIFOLDS OF DIFFERENTIAL SYSTEMS
    JARNIK, J
    KURZWEIL, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (02) : 247 - &
  • [24] Invariant and statistically weakly invariant sets of control systems
    Rodina, L. I.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (02): : 3 - 164
  • [25] The isolated invariant sets of a flow
    Zheng, ZH
    CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 453 - 461
  • [26] Invariant sets of mechanical systems
    Karapetyan, AV
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (06) : 643 - 661
  • [27] Invariant sets for the varactor equation
    Bartuccelli, MV
    Deane, JHB
    Gentile, G
    Marsh, L
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 439 - 457
  • [28] ON FRACTAL DIMENSION OF INVARIANT SETS
    Mirzaie, R.
    MATHEMATICAL REPORTS, 2011, 13 (04): : 377 - 384
  • [29] INVARIANT SETS FOR QMF FUNCTIONS
    Jonsson, Adam
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2559 - 2571
  • [30] TURING-INVARIANT SETS
    VIUGIN, VV
    DOKLADY AKADEMII NAUK SSSR, 1976, 229 (04): : 790 - 793