共 50 条
Reduced invariant sets
被引:0
|作者:
Gerald W. Schwarz
机构:
[1] Brandeis University,Department of Mathematics
来源:
关键词:
20G20;
57S15;
Invariant polynomials;
reduced;
saturated;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let K be a compact Lie group and W a finite-dimensional real K-module. Let X be a K-stable real algebraic subset of W. Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{I}(X)}$$\end{document} denote the ideal of X in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}[W]}$$\end{document} and let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{I}_{K}(X)}$$\end{document} be the ideal generated by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{I}(X)^{K}}$$\end{document} . We find necessary conditions and sufficient conditions for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal{I}(X) = \mathcal{I}_{K}(X)}}$$\end{document} and for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\sqrt{\mathcal{I}_{K}(X)} = \mathcal{I}(X)}}$$\end{document} . We consider analogous questions for actions of complex reductive groups.
引用
收藏
页码:359 / 367
页数:8
相关论文