Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC

被引:0
|
作者
José Mir Justino da Costa
Helcio Rangel Barreto Orlande
Wellington Betencurte da Silva
机构
[1] Federal University of Amazonas-UFAM,Department of Statistics
[2] Federal University of Rio de Janeiro,Department of Mechanical Engineering
[3] UFRJ Cidade Universitária,Laboratório de Modelagem e Otimização de Processos
[4] Federal University of Esprito Santo-UFES,undefined
来源
关键词
Model selection; Parameter estimation; Approximate Bayesian computation and tumor growth; 34F05; 35K57; 60G20; 62J02; 62M86; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
Cancer is one of the most fatal diseases in the world. Governments and researchers from various areas have continuously concentrated efforts to better understand the disease and propose diagnostic and treatment techniques. The use of mathematical models of tumor growth is of great importance for the development of such techniques. Due to the variety of models nowadays available in the literature, the problems of model selection and parameter estimation come into picture, aiming at suitably predicting the patient’s status of the disease. As the available data on dependent variables of existing models might not justify the use of common likelihood functions, approximate Bayesian computation (ABC) becomes a very attractive tool for model selection and model calibration (parameter estimation) in tumor growth models. In the present study, a Monte Carlo approximate Bayesian computation (ABC) algorithm is applied to select among competing models of tumor growth, with and without chemotherapy treatment. Simulated measurements are used in this work. The results obtained show that the algorithm correctly selects the model and estimates the parameters used to generate the simulated measurements.
引用
收藏
页码:2795 / 2815
页数:20
相关论文
共 50 条
  • [21] Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation
    Christopher, Jason D.
    Wimer, Nicholas T.
    Lapointe, Caelan
    Hayden, Torrey R. S.
    Grooms, Ian
    Rieker, Gregory B.
    Hamlington, Peter E.
    PHYSICAL REVIEW FLUIDS, 2018, 3 (10):
  • [22] Bayesian Parameter Estimation and Model Selection for Biophysical Models of Leukocyte Rolling
    Moskopp, Mats L.
    Deussen, Andreas
    Chavakis, Triantafyllos
    Dieterich, Peter
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 304A - 304A
  • [23] Graph metrics as summary statistics for Approximate Bayesian Computation with application to network model parameter estimation
    Fay, Damien
    Moore, Andrew W.
    Brown, Ken
    Filosi, Michele
    Jurman, Giuseppe
    JOURNAL OF COMPLEX NETWORKS, 2015, 3 (01) : 52 - 83
  • [24] An approximate Bayesian computation approach to parameter estimation in a stochastic stage-structured population model
    Scranton, Katherine
    Knape, Jonas
    de Valpine, Perry
    ECOLOGY, 2014, 95 (05) : 1418 - 1428
  • [25] Topological approximate Bayesian computation for parameter inference of an angiogenesis model
    Thorne, Thomas
    Kirk, Paul D. W.
    Harrington, Heather A.
    BIOINFORMATICS, 2022, 38 (09) : 2529 - 2535
  • [26] Reliability Analysis for Degradation-Shock Processes with State-Varying Degradation Patterns Using Approximate Bayesian Computation (ABC) for Parameter Estimation
    Muhammad, Isyaku
    Muhammad, Mustapha
    Wang, Baohua
    Chen, Wang
    Abba, Badamasi
    Usman, Mustapha Mukhtar
    SYMMETRY-BASEL, 2024, 16 (10):
  • [27] Approximate Bayesian Computation by Subset Simulation for Parameter Inference of Dynamical Models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 37 - 50
  • [28] Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
    Francois, Olivier
    Laval, Guillaume
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [29] Bayesian model selection and parameter estimation for fatigue damage progression models in composites
    Chiachio, J.
    Chiachio, M.
    Saxena, A.
    Sankararaman, S.
    Rus, G.
    Goebel, K.
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 70 : 361 - 373
  • [30] Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model
    Wawrzynczak, A.
    Kopka, P.
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES (IC-MSQUARE 2017), 2017, 936