Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC

被引:0
|
作者
José Mir Justino da Costa
Helcio Rangel Barreto Orlande
Wellington Betencurte da Silva
机构
[1] Federal University of Amazonas-UFAM,Department of Statistics
[2] Federal University of Rio de Janeiro,Department of Mechanical Engineering
[3] UFRJ Cidade Universitária,Laboratório de Modelagem e Otimização de Processos
[4] Federal University of Esprito Santo-UFES,undefined
来源
关键词
Model selection; Parameter estimation; Approximate Bayesian computation and tumor growth; 34F05; 35K57; 60G20; 62J02; 62M86; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
Cancer is one of the most fatal diseases in the world. Governments and researchers from various areas have continuously concentrated efforts to better understand the disease and propose diagnostic and treatment techniques. The use of mathematical models of tumor growth is of great importance for the development of such techniques. Due to the variety of models nowadays available in the literature, the problems of model selection and parameter estimation come into picture, aiming at suitably predicting the patient’s status of the disease. As the available data on dependent variables of existing models might not justify the use of common likelihood functions, approximate Bayesian computation (ABC) becomes a very attractive tool for model selection and model calibration (parameter estimation) in tumor growth models. In the present study, a Monte Carlo approximate Bayesian computation (ABC) algorithm is applied to select among competing models of tumor growth, with and without chemotherapy treatment. Simulated measurements are used in this work. The results obtained show that the algorithm correctly selects the model and estimates the parameters used to generate the simulated measurements.
引用
收藏
页码:2795 / 2815
页数:20
相关论文
共 50 条
  • [11] Parameter Estimation for Reynolds-Averaged Navier-Stokes Models Using Approximate Bayesian Computation
    Doronina, Olga A.
    Murman, Scott M.
    Hamlington, Peter E.
    AIAA JOURNAL, 2021, 59 (11) : 4703 - 4718
  • [12] Reinforcement learning and approximate Bayesian computation (RL-ABC) for model selection and parameter calibration of time-varying systems
    Ritto, T. G.
    Beregi, S.
    Barton, D. A. W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [13] Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation
    Christopher, Jason D.
    Doronina, Olga A.
    Petrykowski, Dan
    Hayden, Torrey R. S.
    Lapointe, Caelan
    Wimer, Nicholas T.
    Grooms, Ian
    Rieker, Gregory B.
    Hamlington, Peter E.
    EXPERIMENTS IN FLUIDS, 2021, 62 (02)
  • [14] Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation
    Jason D. Christopher
    Olga A. Doronina
    Dan Petrykowski
    Torrey R. S. Hayden
    Caelan Lapointe
    Nicholas T. Wimer
    Ian Grooms
    Gregory B. Rieker
    Peter E. Hamlington
    Experiments in Fluids, 2021, 62
  • [15] Bayesian parameter estimation and model selection in nonlocal viscoelastic models
    Faria, Domenio de Souza
    Stutz, Leonardo Tavares
    Castello, Daniel Alves
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 211
  • [16] Reinforcement learning and approximate Bayesian computation for model selection and parameter calibration applied to a nonlinear
    Ritto, T. G.
    Beregi, S.
    Barton, D. A. W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 181
  • [17] Approximate Bayesian computation for railway track geometry parameter estimation
    Ashley, Grace
    Attoh-Okine, Nii
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2021, 235 (08) : 1013 - 1021
  • [18] Fluid dynamics characterization of stirred-tank reactors via approximate Bayesian computational (ABC) for parameter estimation and model selection
    Ferreira, Jackline Rodrigues
    Sena, Adriano Passos
    Coutinho, Joao Paulo de Souza
    Macedo, Emanuel Negrao
    Estumano, Diego Cardoso
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (16) : 2579 - 2596
  • [19] Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation
    Kangasraasio, Antti
    Jokinen, Jussi P. P.
    Oulasvirta, Antti
    Howes, Andrew
    Kaski, Samuel
    COGNITIVE SCIENCE, 2019, 43 (06)
  • [20] Parameter inference and model selection in deterministic and stochastic dynamical models via approximate Bayesian computation: modeling a wildlife epidemic
    Sun, Libo
    Lee, Chihoon
    Hoeting, Jennifer A.
    ENVIRONMETRICS, 2015, 26 (07) : 451 - 462