Real-time computability of real numbers by chemical reaction networks

被引:0
|
作者
Xiang Huang
Titus H. Klinge
James I. Lathrop
Xiaoyuan Li
Jack H. Lutz
机构
[1] Iowa State University,Department of Computer Science
[2] Carleton College,Department of Computer Science
来源
Natural Computing | 2019年 / 18卷
关键词
Analog computation; Chemical reaction networks; Hartmanis–Stearns conjecture; Realtime computability;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} in real time if it has a designated species X such that, when all species concentrations are set to zero at time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}, the concentration x(t) of X is within 2-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-t}$$\end{document} of |α|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\alpha |$$\end{document} at all times t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, and the concentrations of all other species are bounded. We show that every algebraic number and some transcendental numbers are real time computable by chemical reaction networks in this sense. We discuss possible implications of this for the 1965 Hartmanis–Stearns conjecture, which says that no irrational algebraic number is real time computable by a Turing machine.
引用
收藏
页码:63 / 73
页数:10
相关论文
共 50 条
  • [31] REAL Real-Time!
    F Boeckman
    L Tan
    K Hamby
    Breast Cancer Research, 2 (Suppl 1)
  • [32] REAL-TIME COMMUNICATION IN MULTIHOP NETWORKS
    KANDLUR, DD
    SHIN, KG
    FERRARI, D
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1994, 5 (10) : 1044 - 1056
  • [33] Real-Time Embedded Sensor Networks
    Govindarasu, Manimaran
    2011 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2011,
  • [34] Real-time visualisation of fibre networks
    J. Lindemann
    O. Dahlblom
    The Visual Computer, 2002, 18 : 20 - 28
  • [35] Real-Time Scheduling for WirelessHART Networks
    Saifullah, Abusayeed
    Xu, You
    Lu, Chenyang
    Chen, Yixin
    31ST IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS 2010), 2010, : 150 - 159
  • [36] Neural networks for real-time control
    Narendra, KS
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1026 - 1031
  • [38] Real-Time Classification of Real-Time Communications
    Perna, Gianluca
    Markudova, Dena
    Trevisan, Martino
    Garza, Paolo
    Meo, Michela
    Munafo, Maurizio Matteo
    Carofiglio, Giovanna
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4676 - 4690
  • [39] PARALLEL PROCESSORS ACQUIRE AND CRUNCH NUMBERS IN REAL-TIME
    BABB, M
    CONTROL ENGINEERING, 1990, 37 (05) : 133 - 133
  • [40] Real-time inspection for real-time decisions
    Moran, T
    MANUFACTURING ENGINEERING, 2004, 133 (04): : 12 - 12