Real-time computability of real numbers by chemical reaction networks

被引:0
|
作者
Xiang Huang
Titus H. Klinge
James I. Lathrop
Xiaoyuan Li
Jack H. Lutz
机构
[1] Iowa State University,Department of Computer Science
[2] Carleton College,Department of Computer Science
来源
Natural Computing | 2019年 / 18卷
关键词
Analog computation; Chemical reaction networks; Hartmanis–Stearns conjecture; Realtime computability;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} in real time if it has a designated species X such that, when all species concentrations are set to zero at time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}, the concentration x(t) of X is within 2-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-t}$$\end{document} of |α|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\alpha |$$\end{document} at all times t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, and the concentrations of all other species are bounded. We show that every algebraic number and some transcendental numbers are real time computable by chemical reaction networks in this sense. We discuss possible implications of this for the 1965 Hartmanis–Stearns conjecture, which says that no irrational algebraic number is real time computable by a Turing machine.
引用
收藏
页码:63 / 73
页数:10
相关论文
共 50 条
  • [21] Real-time hybridization chain reaction
    D. A. Chemeris
    Yu. M. Nikonorov
    V. A. Vakhitov
    Doklady Biochemistry and Biophysics, 2008, 419 : 53 - 55
  • [22] REAL-TIME INTERROGATION OF CHEMICAL DATA
    MARCUS, RJ
    GLOYE, EE
    JOURNAL OF CHEMICAL DOCUMENTATION, 1971, 11 (03): : 163 - &
  • [23] Real-time chemistry and chemical education
    Ellis, AB
    JOURNAL OF CHEMICAL EDUCATION, 2002, 79 (09) : 1034 - 1035
  • [24] Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule
    Kazuma, Emiko
    Jung, Jaehoon
    Ueba, Hiromu
    Trenary, Michael
    Kim, Yousoo
    SCIENCE, 2018, 360 (6388) : 521 - 525
  • [25] REAL-TIME MODELING OF POWER NETWORKS
    BOSE, A
    CLEMENTS, KA
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1607 - 1622
  • [26] SPECIFICATION OF REAL-TIME BROADCAST NETWORKS
    JAIN, P
    LAM, SS
    IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (04) : 404 - 422
  • [27] Real-time visualisation of fibre networks
    Lindemann, J
    Dahlblom, O
    VISUAL COMPUTER, 2002, 18 (01): : 20 - 28
  • [28] Real-time communication in FDDI networks
    Malcolm, N
    Kamat, S
    Zhao, W
    REAL-TIME SYSTEMS, 1996, 10 (01) : 75 - 107
  • [29] Real-time construction of neural networks
    Li, Kang
    Peng, Jian Xun
    Fei, Minrui
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 140 - 149
  • [30] Real-time traffic in deflection networks
    Olesinski, W
    Gburzynski, P
    PROCEEDINGS OF THE COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS MODELING AND SIMULATION (CNDS'98), 1998, : 23 - 28