Real-time computability of real numbers by chemical reaction networks

被引:0
|
作者
Xiang Huang
Titus H. Klinge
James I. Lathrop
Xiaoyuan Li
Jack H. Lutz
机构
[1] Iowa State University,Department of Computer Science
[2] Carleton College,Department of Computer Science
来源
Natural Computing | 2019年 / 18卷
关键词
Analog computation; Chemical reaction networks; Hartmanis–Stearns conjecture; Realtime computability;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} in real time if it has a designated species X such that, when all species concentrations are set to zero at time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}, the concentration x(t) of X is within 2-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-t}$$\end{document} of |α|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\alpha |$$\end{document} at all times t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, and the concentrations of all other species are bounded. We show that every algebraic number and some transcendental numbers are real time computable by chemical reaction networks in this sense. We discuss possible implications of this for the 1965 Hartmanis–Stearns conjecture, which says that no irrational algebraic number is real time computable by a Turing machine.
引用
收藏
页码:63 / 73
页数:10
相关论文
共 50 条
  • [1] Real-Time Computability of Real Numbers by Chemical Reaction Networks
    Huang, Xiang
    Klinge, Titus H.
    Lathrop, James, I
    Li, Xiaoyuan
    Lutz, Jack H.
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2017, 2017, 10240 : 29 - 40
  • [2] Real-time computability of real numbers by chemical reaction networks
    Huang, Xiang
    Klinge, Titus H.
    Lathrop, James I.
    Li, Xiaoyuan
    Lutz, Jack H.
    NATURAL COMPUTING, 2019, 18 (01) : 63 - 73
  • [3] A computability theory of real numbers
    Zheng, Xizhong
    LOGICAL APPROACHES TO COMPTATIONAL BARRIERS, PROCEEDINGS, 2006, 3988 : 584 - 594
  • [4] Real-time computing and robust memory with deterministic chemical reaction networks
    Fletcher, Willem
    Klinge, Titus H.
    Lathrop, James I.
    Nye, Dawn A.
    Rayman, Matthew
    NATURAL COMPUTING, 2024,
  • [5] REAL-TIME DECIDABILITY COMPUTABILITY COUNTABILITY AND GENERABILITY
    OCHRANOV.R
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1968, 14 (03): : 283 - &
  • [6] A REAL-TIME - CHEMICAL-REACTION ANALYZER
    REIN, AJ
    AMERICAN LABORATORY, 1989, 21 (03) : 126 - 128
  • [7] REAL-TIME REACTION
    SPENCER, WP
    DR DOBBS JOURNAL, 1988, 13 (09): : 12 - 12
  • [8] Real-time probing of chirality during a chemical reaction
    Baykusheva, Denitsa
    Zindel, Daniel
    Svoboda, Vit
    Bommeli, Elias
    Ochsner, Manuel
    Tehlar, Andres
    Worner, Hans Jakob
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (48) : 23923 - 23929
  • [9] On approximate and algebraic computability over the real numbers
    Hemmerling, A
    THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) : 185 - 223
  • [10] Real-time thresholding with Euler numbers
    Snidaro, L
    Foresti, GL
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1533 - 1544