Optimal frequency measurements with quantum probes

被引:0
|
作者
Simon Schmitt
Tuvia Gefen
Daniel Louzon
Christian Osterkamp
Nicolas Staudenmaier
Johannes Lang
Matthew Markham
Alex Retzker
Liam P. McGuinness
Fedor Jelezko
机构
[1] Ulm University,Institute of Quantum Optics
[2] Hebrew University of Jerusalem,Racah Institute of Physics
[3] Element Six,Laser Physics Centre, Research School of Physics
[4] Australian National University,Center for Integrated Quantum Science and Technology (IQST)
[5] Ulm University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Precise frequency measurements are important in applications ranging from navigation and imaging to computation and communication. Here we outline the optimal quantum strategies for frequency discrimination and estimation in the context of quantum spectroscopy, and we compare the effectiveness of different readout strategies. Using a single NV center in diamond, we implement the optimal frequency discrimination protocol to discriminate two frequencies separated by 2 kHz with a single 44 μs measurement, a factor of ten below the Fourier limit. For frequency estimation, we achieve a frequency sensitivity of 1.6 µHz/Hz2 for a 1.7 µT amplitude signal, which is within a factor of 2 from the quantum limit. Our results are foundational for discrimination and estimation problems in nanoscale nuclear magnetic resonance spectroscopy.
引用
收藏
相关论文
共 50 条
  • [31] Quantum state transformation by optimal projective measurements
    Wang, Yaoxiong
    Wu, Rebing
    Chen, Xin
    Ge, Yunjian
    Shi, Junhui
    Rabitz, Herschel
    Shuang, Feng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (02) : 507 - 519
  • [32] Optimal quantum measurements of expectation values of observables
    Knill, Emanuel
    Ortiz, Gerardo
    Somma, Rolando D.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [33] Optimal reordering of measurements for photonic quantum tomography
    Hosak, Radim
    Starek, Robert
    Jezek, Miroslav
    OPTICS EXPRESS, 2018, 26 (25): : 32878 - 32887
  • [34] Parity-enhanced quantum optimal measurements
    Xing, Hai-Jun
    Fu, Libin
    Yi, Su
    NEW JOURNAL OF PHYSICS, 2024, 26 (01):
  • [35] Optimal quantum measurements for phase estimation in interferometry
    Sanders, BC
    Milburn, GJ
    Zhang, ZX
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT, 1997, : 309 - 315
  • [36] Optimal Quantum Tomography of States, Measurements, and Transformations
    Bisio, A.
    Chiribella, G.
    D'Ariano, G. M.
    Facchini, S.
    Perinotti, P.
    PHYSICAL REVIEW LETTERS, 2009, 102 (01)
  • [37] Optimal frequency measurements with maximally correlated states
    Bollinger, JJ
    Itano, WM
    Wineland, DJ
    Heinzen, DJ
    PHYSICAL REVIEW A, 1996, 54 (06): : R4649 - R4652
  • [38] FREQUENCY-SPARSE OPTIMAL QUANTUM CONTROL
    Friesecke, Gero
    Henneke, Felix
    Kunisch, Karl
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (01) : 155 - 176
  • [39] Limit on the frequency of measurements in the quantum Zeno effect
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (07):
  • [40] Quantum Limited Measurements with Optical Frequency Combs
    Jian, P.
    Pinel, O.
    Roslund, J.
    Schmeissner, R.
    Lamine, B.
    Fabre, C.
    Treps, N.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,