Parity-enhanced quantum optimal measurements

被引:1
|
作者
Xing, Hai-Jun [1 ,2 ,3 ]
Fu, Libin [3 ]
Yi, Su [4 ,5 ,6 ,7 ]
机构
[1] Northeast Normal Univ, Ctr Quantum Sci, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Phys, Changchun 130024, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
[4] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100049, Peoples R China
[7] Beihang Univ, Peng Huanwu Collaborat Ctr Res & Educ, Beijing 100191, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 01期
关键词
quantum precision measurement; optimal measurement; parity measurement; parity symmetry; STATES; NOISE;
D O I
10.1088/1367-2630/ad15b5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, measurement and estimation schemes are vital for achieving higher precision, along with initial state preparation. This article presents the compound measurement of parity and particle number, which is optimal for a broad range of states named equator states (ESs). ES encompasses most pure input states used in current studies and, more significantly, a wide range of mixed states. Moreover, the ES can be prepared directly using non-demolition parity measurement. We thus propose an improved quantum phase estimation protocol applicable to arbitrary input states, ensuring precision consistently surpassing that of the standard protocol. The proposed scheme is also demonstrated using a nonlinear interferometer, with the realization of the non-demolition parity measurement in atomic condensates.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimal conventional measurements for quantum-enhanced interferometry
    Zhong, Wei
    Huang, Yixiao
    Wang, Xiaoguang
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [2] Parity measurements in quantum optical metrology
    Chiruvelli, Aravind
    Lee, Hwang
    JOURNAL OF MODERN OPTICS, 2011, 58 (11) : 945 - 953
  • [3] Optimal measurements in quantum mechanics
    Heinonen, T
    PHYSICS LETTERS A, 2005, 346 (1-3) : 77 - 86
  • [4] Optimal covariant quantum measurements
    Haapasalo, Erkka
    Pellonpaa, Juha-Pekka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (15)
  • [5] Measurements, quantum discord, and parity in spin-1 systems
    Rossignoli, R.
    Matera, J. M.
    Canosa, N.
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [6] Always-On Quantum Error Tracking with Continuous Parity Measurements
    Mohseninia, Razieh
    Yang, Jing
    Siddiqi, Irfan
    Jordan, Andrew N.
    Dressel, Justin
    QUANTUM, 2020, 4 : 1 - 34
  • [7] Non-Local Parity Measurements and the Quantum Pigeonhole Effect
    Paraoanu, G. S.
    ENTROPY, 2018, 20 (08):
  • [8] Optimal measurements for relative quantum information
    Bartlett, SD
    Rudolph, T
    Spekkens, RW
    PHYSICAL REVIEW A, 2004, 70 (03): : 032321 - 1
  • [9] Quantum cloning optimal for joint measurements
    D'Ariano, GM
    Sacchi, MF
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 159 - 162
  • [10] Optimal measurements for quantum spatial superresolution
    Rehacek, J.
    Hradil, Z.
    Koutny, D.
    Grover, J.
    Krzic, A.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2018, 98 (01)