A Double Tiling of Triangles and Regular Hexagons

被引:0
|
作者
H. Okumura
J. F. Rigby
机构
[1] Maebashi Institute of Technology,
[2] 460 Kamisadori,undefined
[3] Maebashi,undefined
[4] Gunma 371,undefined
[5] Japan okumura@maebashi-it.ac.jp ,undefined
[6] School of Mathematics,undefined
[7] Cardiff University,undefined
[8] Senghennydd Road,undefined
[9] Cardiff CF2 4YH,undefined
[10] Wales rigby@cardiff.ac.uk [-20pt],undefined
来源
关键词
Complex Number; Focal Point; Regular Hexagon; Triangle Geometry; Double Tiling;
D O I
暂无
中图分类号
学科分类号
摘要
A tiling of triangles and regular hexagons, which wraps around a focal point and covers the plane twice, is investigated using both synthetic triangle geometry and complex numbers.
引用
收藏
页码:467 / 480
页数:13
相关论文
共 50 条
  • [21] Tiling Enumeration of Hexagons with Off-Central Holes
    Lai, Tri
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [22] Perfect Hexagons, Elementary Triangles, and the Center of a Cubic Curve
    Fletcher, Raymond R., III
    BRIDGING MATHEMATICS, STATISTICS, ENGINEERING AND TECHNOLOGY, 2012, 24 : 115 - 130
  • [23] The number of convex tilings of the sphere by triangles, squares, or hexagons
    Engel, Philip
    Smillie, Peter
    GEOMETRY & TOPOLOGY, 2018, 22 (05) : 2839 - 2864
  • [24] Lozenge Tiling Function Ratios for Hexagons with Dents on Two Sides
    Condon, Daniel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 24
  • [25] Quasi-regular tessellation of hexagons
    Kaᅭcič, Branko
    Žalik, Borut
    Journal of Computing and Information Technology, 2001, 9 (03) : 227 - 232
  • [26] Tiling with triangles: parquet and GWγ methods unified
    Krien, Friedrich
    Kauch, Anna
    Held, Karsten
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [27] Tiling the unit square with 5 rational triangles
    Campbell, Garikai
    Brady, James
    Nair, Arvind
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (02) : 399 - 418
  • [28] TILING CONVEX POLYGONS WITH EQUILATERAL TRIANGLES AND SQUARES
    MALKEVITCH, J
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 440 : 299 - 303
  • [29] Tiling Convex Polygons with Congruent Equilateral Triangles
    Eike Hertel
    Christian Richter
    Discrete & Computational Geometry, 2014, 51 : 753 - 759
  • [30] Tiling Convex Polygons with Congruent Equilateral Triangles
    Hertel, Eike
    Richter, Christian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 753 - 759