Tiling the unit square with 5 rational triangles

被引:0
|
作者
Campbell, Garikai [1 ]
Brady, James [1 ]
Nair, Arvind [1 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
rational triangles; elliptic curves;
D O I
10.1216/rmjm/1181068758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are 14 distinct ways to tile the unit square (modulo the symmetries of the square) with 5 triangles such that the 5-tiling is not a subdivision of a tiling using fewer triangles. We demonstrate how to construct infinitely many rational tilings in each of the 14 configurations. This stands in contrast to a long standing inability to find rational 4-tilings of the unit square in the so-called X-configuration.
引用
收藏
页码:399 / 418
页数:20
相关论文
共 50 条
  • [1] TILING THE SQUARE WITH RATIONAL TRIANGLES
    GUY, RK
    NUMBER THEORY AND APPLICATIONS, 1989, 265 : 45 - 101
  • [2] TILING THE UNIT SQUARE WITH SQUARES AND RECTANGLES
    OWINGS, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 156 - 160
  • [3] Average unit cell of a square Fibonacci tiling
    Urban, G
    Wolny, J
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 334 : 105 - 109
  • [4] A TILING OF THE PLANE WITH TRIANGLES
    MIELKE, PT
    TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (05): : 377 - 381
  • [5] Tiling a strip with triangles
    Bodeen, John
    Butler, Steve
    Kim, Taekyoung
    Sun, Xiyuan
    Wang, Shenzhi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [6] Tiling Polygons with Lattice Triangles
    Butler, Steve
    Chung, Fan
    Graham, Ron
    Laczkovich, Miklos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 896 - 903
  • [7] Tiling Polygons with Lattice Triangles
    Steve Butler
    Fan Chung
    Ron Graham
    Miklós Laczkovich
    Discrete & Computational Geometry, 2010, 44 : 896 - 903
  • [8] REP-TILING FOR TRIANGLES
    SNOVER, SL
    WAIVERIS, C
    WILLIAMS, JK
    DISCRETE MATHEMATICS, 1991, 91 (02) : 193 - 200
  • [9] 93.21 Rational walks in the unit square
    Barbara, Roy
    MATHEMATICAL GAZETTE, 2009, 93 (527): : 276 - 277
  • [10] RATIONAL TRIANGLES
    FINE, NJ
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (07): : 517 - 521