Linear independence of certain sums of reciprocals of the Lucas numbers

被引:0
|
作者
Daniel Duverney
Yohei Tachiya
机构
[1] Bâtiment A1,Graduate School of Science and Technology
[2] Hirosaki University,undefined
来源
关键词
Linear independence; Lucas numbers; Linnik’s theorem; Primary 11J72; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let h≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 3$$\end{document} and i be integers with 1≤i≤h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le h-1$$\end{document}. In this paper, we give linear independence results for the values of the functions gh,i(z):=∑n=1∞zin-z(h-i)n1-zhn,|z|<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_{h,i}(z):=\sum _{n=1}^{\infty }\frac{z^{in}-z^{(h-i)n}}{1-z^{hn}} , \quad |z|<1, \end{aligned}$$\end{document}at suitable algebraic points. As an application, we deduce arithmetical properties of certain sums of reciprocals of linear recurrence sequences. For example, the six numbers 1,∑n=1∞1L2n,∑n=1∞1L2n+1,∑n=1∞1L2n-1,∑n=1∞1L4n,∑n=1∞1L4n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1,\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}+1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}-1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}-1} \end{aligned}$$\end{document}are linearly independent over the field Q5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}\left( \sqrt{5}\right) $$\end{document}, where {Ln}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{n}\}_{n\ge 0}$$\end{document} is the classical Lucas sequence.
引用
收藏
页码:378 / 394
页数:16
相关论文
共 50 条
  • [41] ON THE SUMS OF k-LUCAS NUMBERS
    Panwar, Yashwant K.
    Mansuri, Akhlak
    Bhandari, Jaya
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3427 - 3434
  • [42] TRANSCENDENCY RESULTS FOR SUMS OF RECIPROCALS OF LINEAR RECURRENCES
    BECKER, PG
    TOPFER, T
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 5 - 17
  • [43] ALGEBRAIC INDEPENDENCE OF RECIPROCAL SUMS OF POWERS OF CERTAIN FIBONACCI-TYPE NUMBERS
    Bundschuh, Peter
    Vaananen, Keijo
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (01) : 47 - 68
  • [44] A LINEAR INDEPENDENCE MEASURE FOR CERTAIN P-ADIC NUMBERS
    VAANANEN, K
    WALLISSER, R
    JOURNAL OF NUMBER THEORY, 1991, 39 (02) : 225 - 236
  • [45] SUMS OF RECIPROCALS
    FERRERO, B
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (06): : 511 - 511
  • [46] On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices
    Kilic, E.
    Stakhov, A. P.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2210 - 2221
  • [47] Repdigits as sums of two generalized Lucas numbers
    Rayaguru, Sai Gopal
    Bravo, Jhon Jairo
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1166 - 1179
  • [48] Repdigits as Sums of Four Fibonacci or Lucas Numbers
    Normenyo, Benedict Vasco
    Luca, Florian
    Togbe, Alain
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (07)
  • [49] Representation of Integers as Sums of Fibonacci and Lucas Numbers
    Park, Ho
    Cho, Bumkyu
    Cho, Durkbin
    Cho, Yung Duk
    Park, Joonsang
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 8
  • [50] On factors of sums of consecutive Fibonacci and Lucas numbers
    Cerin, Zvonko
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 19 - 25