Linear independence of certain sums of reciprocals of the Lucas numbers

被引:0
|
作者
Daniel Duverney
Yohei Tachiya
机构
[1] Bâtiment A1,Graduate School of Science and Technology
[2] Hirosaki University,undefined
来源
关键词
Linear independence; Lucas numbers; Linnik’s theorem; Primary 11J72; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let h≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 3$$\end{document} and i be integers with 1≤i≤h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le h-1$$\end{document}. In this paper, we give linear independence results for the values of the functions gh,i(z):=∑n=1∞zin-z(h-i)n1-zhn,|z|<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_{h,i}(z):=\sum _{n=1}^{\infty }\frac{z^{in}-z^{(h-i)n}}{1-z^{hn}} , \quad |z|<1, \end{aligned}$$\end{document}at suitable algebraic points. As an application, we deduce arithmetical properties of certain sums of reciprocals of linear recurrence sequences. For example, the six numbers 1,∑n=1∞1L2n,∑n=1∞1L2n+1,∑n=1∞1L2n-1,∑n=1∞1L4n,∑n=1∞1L4n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1,\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}+1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}-1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}-1} \end{aligned}$$\end{document}are linearly independent over the field Q5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}\left( \sqrt{5}\right) $$\end{document}, where {Ln}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{n}\}_{n\ge 0}$$\end{document} is the classical Lucas sequence.
引用
收藏
页码:378 / 394
页数:16
相关论文
共 50 条
  • [31] LINEAR INDEPENDENCE OF LOGARITHMS OF CERTAIN RATIONAL NUMBERS
    SOROKIN, VN
    MATHEMATICAL NOTES, 1989, 46 (3-4) : 727 - 730
  • [32] SUMS OF RECIPROCALS OF CERTAIN ADDITIVE-FUNCTIONS
    DEKONINCK, JM
    IVIC, A
    MANUSCRIPTA MATHEMATICA, 1980, 30 (04) : 329 - 341
  • [33] Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers
    Guo, Dongwei
    Chu, Wenchang
    MATHEMATICS, 2022, 10 (15)
  • [34] Lucas numbers as sums of two repdigits
    Adegbindin, Chefiath
    Luca, Florian
    Togbe, Alain
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (03) : 295 - 304
  • [35] Repdigits As Sums Of Two Lucas Numbers
    Siar, Zafer
    Keskin, Refik
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 33 - 38
  • [36] On Multiple Sums of Products of Lucas Numbers
    Seibert, Jarsosla
    Trojovsky, Pavel
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (04)
  • [37] Binomial Triple Sums with the Lucas Numbers
    Tasdemir, Funda
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (07): : 37 - 43
  • [38] Lucas numbers as sums of two repdigits
    Chèfiath Adegbindin
    Florian Luca
    Alain Togbé
    Lithuanian Mathematical Journal, 2019, 59 : 295 - 304
  • [39] REPDIGITS AS SUMS OF THREE LUCAS NUMBERS
    Luca, Florian
    Normenyo, Benedict Vasco
    Togbe, Alain
    COLLOQUIUM MATHEMATICUM, 2019, 156 (02) : 255 - 265
  • [40] POWER SUMS OF FIBONACCI AND LUCAS NUMBERS
    Chu, Wenchang
    Li, Nadia N.
    QUAESTIONES MATHEMATICAE, 2011, 34 (01) : 75 - 83