Linear independence of certain sums of reciprocals of the Lucas numbers

被引:0
|
作者
Daniel Duverney
Yohei Tachiya
机构
[1] Bâtiment A1,Graduate School of Science and Technology
[2] Hirosaki University,undefined
来源
关键词
Linear independence; Lucas numbers; Linnik’s theorem; Primary 11J72; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let h≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 3$$\end{document} and i be integers with 1≤i≤h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le h-1$$\end{document}. In this paper, we give linear independence results for the values of the functions gh,i(z):=∑n=1∞zin-z(h-i)n1-zhn,|z|<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_{h,i}(z):=\sum _{n=1}^{\infty }\frac{z^{in}-z^{(h-i)n}}{1-z^{hn}} , \quad |z|<1, \end{aligned}$$\end{document}at suitable algebraic points. As an application, we deduce arithmetical properties of certain sums of reciprocals of linear recurrence sequences. For example, the six numbers 1,∑n=1∞1L2n,∑n=1∞1L2n+1,∑n=1∞1L2n-1,∑n=1∞1L4n,∑n=1∞1L4n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1,\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}+1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}-1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}-1} \end{aligned}$$\end{document}are linearly independent over the field Q5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}\left( \sqrt{5}\right) $$\end{document}, where {Ln}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{n}\}_{n\ge 0}$$\end{document} is the classical Lucas sequence.
引用
收藏
页码:378 / 394
页数:16
相关论文
共 50 条
  • [1] Linear independence of certain sums of reciprocals of the Lucas numbers
    Duverney, Daniel
    Tachiya, Yohei
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (02) : 378 - 394
  • [2] Linear independence results for sums of reciprocals of Fibonacci and Lucas numbers
    D. Duverney
    Y. Suzuki
    Y. Tachiya
    Acta Mathematica Hungarica, 2020, 162 : 375 - 392
  • [3] LINEAR INDEPENDENCE RESULTS FOR SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
    Duverney, D.
    Suzuki, Y.
    Tachiya, Y.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 375 - 392
  • [4] ON SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS-NUMBERS
    JENNINGS, D
    FIBONACCI QUARTERLY, 1994, 32 (01): : 18 - 21
  • [5] Inequalities Involving Sums of Reciprocals of Fibonacci and Lucas Numbers
    Higuita, Robinson
    Davenport, Kenneth B.
    Fleischman, Dmitry
    Kwong, Harris
    Ohtsuka, Hideyuki
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2015, 53 (03): : 282 - 283
  • [6] Algebraic independence of sums of reciprocals of the Fibonacci numbers
    Nishioka, K
    Tanaka, A
    Toshimitsu, T
    MATHEMATISCHE NACHRICHTEN, 1999, 202 : 97 - 108
  • [7] Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers
    Matala-Aho, Tapani
    Prevost, Marc
    RAMANUJAN JOURNAL, 2006, 11 (02): : 249 - 261
  • [8] Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers
    Tapani Matala-Aho
    Marc Prévost
    The Ramanujan Journal, 2006, 11 : 249 - 261
  • [9] On sums of certain products of Lucas numbers
    Seibert, Jaroslav
    Trojovsky, Pavel
    FIBONACCI QUARTERLY, 2006, 44 (02): : 172 - 180
  • [10] Sums of certain products of Fibonacci and Lucas numbers
    Melham, RS
    FIBONACCI QUARTERLY, 1999, 37 (03): : 248 - 251