Independent dominating sets in regular graphs

被引:0
|
作者
Julie Haviland
机构
[1] Exeter College,
来源
关键词
Independent domination number; Regular graph; Extremal graph theory;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple, regular graph of order n and degree δ. The independent domination numberi(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish new upper bounds, as functions of n and δ, for the independent domination number of regular graphs with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n/6<\delta< (3-\sqrt{5})n/2$\end{document}. Our two main theorems complement recent results of Goddard et al. (Ann. Comb., 2011) for larger values of δ.
引用
收藏
页码:120 / 126
页数:6
相关论文
共 50 条
  • [31] Graphs such that All Minimum Dominating Sets Intersect All Maximally Independent Sets
    Johnson, P. D., Jr.
    Prier, D. R.
    UTILITAS MATHEMATICA, 2012, 89 : 211 - 224
  • [32] Some results about independent sets and independent dominating sets on the strong product of graphs and its applications
    Klobucar, A
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH - KOI 2004, 2005, : 17 - 23
  • [33] Disjoint dominating and total dominating sets in graphs
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    Southey, Justin
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1615 - 1623
  • [34] Matchings and independent sets of a fixed size in regular graphs
    Carroll, Teena
    Galvin, David
    Tetali, Prasad
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (07) : 1219 - 1227
  • [35] Extremal Regular Graphs: Independent Sets and Graph Homomorphisms
    Zhao, Yufei
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (09): : 827 - 843
  • [36] An upper bound for the number of independent sets in regular graphs
    Galvin, David
    DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6635 - 6640
  • [37] Large independent sets in regular graphs of large girth
    Lauer, Joseph
    Wormald, Nicholas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 999 - 1009
  • [38] On the Existence of Independent [j,k]-Dominating Sets in the Generalized Corona of Graphs
    Kosiorowska, Anna
    Wloch, Iwona
    SYMMETRY-BASEL, 2023, 15 (04):
  • [39] Small independent edge dominating sets in graphs of maximum degree three
    Zwoiniak, GY
    SOFSEM 2006: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2006, 3831 : 556 - 564
  • [40] Super Dominating Sets in Graphs
    M. Lemańska
    V. Swaminathan
    Y. B. Venkatakrishnan
    R. Zuazua
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 353 - 357