Let G be a simple, regular graph of order n and degree δ. The independent domination numberi(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish new upper bounds, as functions of n and δ, for the independent domination number of regular graphs with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$n/6<\delta< (3-\sqrt{5})n/2$\end{document}. Our two main theorems complement recent results of Goddard et al. (Ann. Comb., 2011) for larger values of δ.
机构:
Univ Chicago, Dept Stat, 5747 South Ellis Ave, Chicago, IL 60637 USAUniv Chicago, Dept Stat, 5747 South Ellis Ave, Chicago, IL 60637 USA
Ding, Jian
Sly, Allan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Stat, 367 Evans Hall, Berkeley, CA 94720 USA
Australian Natl Univ, Inst Math Sci, John Dedman Bldg 27,Union Lane, Canberra, ACT 0200, AustraliaUniv Chicago, Dept Stat, 5747 South Ellis Ave, Chicago, IL 60637 USA
Sly, Allan
Sun, Nike
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Sequoia Hall,390 Serra Mall, Stanford, CA 94305 USAUniv Chicago, Dept Stat, 5747 South Ellis Ave, Chicago, IL 60637 USA