A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe

被引:0
|
作者
Sreeram Reddy Kotha
Graeme Weatherill
Dino Bindi
Fabrice Cotton
机构
[1] Helmholtz Centre Potsdam,Institute of Geosciences
[2] GFZ German Research Centre for Geosciences,undefined
[3] Univ. Grenoble Alpes,undefined
[4] Univ. Savoie Mont Blanc,undefined
[5] CNRS,undefined
[6] IRD,undefined
[7] IFSTTAR,undefined
[8] ISTerre,undefined
[9] University of Potsdam,undefined
来源
Bulletin of Earthquake Engineering | 2020年 / 18卷
关键词
Ground-motion model; Response spectra; Robust mixed-effects regression; Regionally adaptable; Seismic hazard and risk; Europe;
D O I
暂无
中图分类号
学科分类号
摘要
To complement the new European Strong-Motion dataset and the ongoing efforts to update the seismic hazard and risk assessment of Europe and Mediterranean regions, we propose a new regionally adaptable ground-motion model (GMM). We present here the GMM capable of predicting the 5% damped RotD50 of PGA, PGV, and SAT=0.01-8s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ SA\left( {T = 0.01 - 8\,{\text{s}}} \right) $$\end{document} from shallow crustal earthquakes of 3≤MW≤7.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 3 \le M_{W} \le 7.4 $$\end{document} occurring 0<RJB≤545km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0 < R_{JB} \le 545\,{\text{km}} $$\end{document} away from sites with 90≤Vs30≤3000ms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 90 \le V_{s30} \le 3000\,{\text{m}}\,{\text{s}}^{ - 1} $$\end{document} or 0.001≤slope≤1mm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0.001 \le slope \le 1\,{\text{m}}\,{\text{m}}^{ - 1} $$\end{document}. The extended applicability derived from thousands of new recordings, however, comes with an apparent increase in the aleatory variability (σ). Firstly, anticipating contaminations and peculiarities in the dataset, we employed robust mixed-effect regressions to down weigh only, and not eliminate entirely, the influence of outliers on the GMM median and σ. Secondly, we regionalised the attenuating path and localised the earthquake sources using the most recent models, to quantify region-specific anelastic attenuation and locality-specific earthquake characteristics as random-effects, respectively. Thirdly, using the mixed-effect variance–covariance structure, the GMM can be adapted to new regions, localities, and sites with specific datasets. Consequently, the σ is curtailed to a 7% increase at T < 0.3 s, and a substantial 15% decrease at T ≥ 0.3 s, compared to the RESORCE based partially non-ergodic GMM. We provide the 46 attenuating region-, 56 earthquake localities-, and 1829 site-specific adjustments, demonstrate their usage, and present their robustness through a 10-fold cross-validation exercise.
引用
收藏
页码:4091 / 4125
页数:34
相关论文
共 50 条
  • [41] Ground motion prediction equations based on shallow crustal earthquakes in Georgia and the surrounding Caucasus
    Jorjiashvili Nato
    Shengelia Ia
    Godoladze Tea
    Gunia Irakli
    Akubardia Dimitri
    Earthquake Science, 2022, 35 (06) : 497 - 509
  • [43] Validation of the New Procedures for Evaluating Parameters of Crustal Earthquakes Caused by Long Faults for Ground-Motion Prediction
    Dan, Kazuo
    Ju, Dianshu
    Fujiwara, Hiroyuki
    Morikawa, Nobuyuki
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2019, 109 (01) : 152 - 163
  • [44] Vertical ground-motion prediction equation and the vertical-to-horizontal spectral ratio for crustal earthquakes in Taiwan
    Van-Bang Phung
    Abrahamson, Norman A.
    Huang, Bor-Shouh
    Loh, Chin Hsiung
    EARTHQUAKE SPECTRA, 2022, 38 (02) : 1189 - 1222
  • [45] Equivalent Point-Source Ground-Motion Model for Subduction Earthquakes in Japan
    Hassani, Behzad
    Atkinson, Gail Marie
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2021, 111 (02) : 951 - 974
  • [46] Strong ground-motion relations for Mexican interplate earthquakes
    Danny Arroyo
    Daniel García
    Mario Ordaz
    Mauricio Alexander Mora
    Shri Krishna Singh
    Journal of Seismology, 2010, 14 : 769 - 785
  • [47] Ground-motion attenuation relationship for the Sumatran megathrust earthquakes
    Megawati, Kusnowidjaja
    Pan, Tso-Chien
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2010, 39 (08): : 827 - 845
  • [48] Subevent structure of large earthquakes - A ground-motion perspective
    Beresnev, I
    Atkinson, G
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (01) : 53 - 56
  • [49] A Site-specific ground-motion simulation model: Application for Vrancea earthquakes
    Radu, Alin
    Grigoriu, Mircea
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 111 : 77 - 86
  • [50] Ground-motion models for earthquakes occurring in the United Kingdom
    Douglas, John
    Aldama-Bustos, Guillermo
    Tallett-Williams, Sarah
    Davi, Manuela
    Tromans, Iain J.
    BULLETIN OF EARTHQUAKE ENGINEERING, 2024, 22 (09) : 4265 - 4302