An Endpoint Weak-Type Estimate for Multilinear Calderón–Zygmund Operators

被引:0
|
作者
Cody B. Stockdale
Brett D. Wick
机构
[1] Washington University in St. Louis,Department of Mathematics and Statistics
关键词
Singular integrals; Multilinear operators; Weak-type estimates; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this article is to provide an alternative proof of the weak-type 1,…,1;1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\ldots ,1;\frac{1}{m}\right) $$\end{document} estimate for m-multilinear Calderón–Zygmund operators on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} first proved by Grafakos and Torres. Subsequent proofs in the bilinear setting have been given by Maldonado and Naibo and also by Pérez and Torres. The proof given here is motivated by the proof of the weak-type (1, 1) estimate for Calderón–Zygmund operators in the nonhomogeneous setting by Nazarov, Treil, and Volberg.
引用
收藏
页码:2635 / 2652
页数:17
相关论文
共 50 条