Given a general dyadic grid D and a sparse family of cubes S = {Qjk ∈ D, define a dyadic positive operator AD,S by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A_{D,S}}f(x) = \sum\limits_{j,k} {{f_{Q_j^k}}{\chi _{Q_j^k}}} (x)$$\end{document}. Given a Banach function space X(ℝn) and the maximal Calderón-Zygmund operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T_\natural }$$\end{document}, we show that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\left\| {{T_\natural}f} \right\|_X} \leqslant c(T,n)\mathop {\sup }\limits_{D,S} {\left\| {{A_{D,S}}|f|} \right\|_X}$$\end{document} This result is applied to weighted inequalities. In particular, it implies (i) the “twoweight conjecture” by D. Cruz-Uribe and C. Pérez in full generality; (ii) a simplification of the proof of the “A2 conjecture”; (iii) an extension of certain mixed Ap−Ar estimates to general Calderón-Zygmund operators; (iv) an extension of sharp A1 estimates (known for T ) to the maximal Calderón-Zygmund operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\natural $$\end{document}.