For every product preserving bundle functor Tμ on fibered manifolds, we describe the underlying functor of any order (r, s, q), s ≥ r ≤ q. We define the bundle \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document} of (k, l)-dimensional contact elements of the order (r, s, q) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ. We also determine all natural transformations of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document} into itself and of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$T\left( {K_{k,l}^{r,s,q} Y} \right)$$
\end{document} into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from Y to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document}.