共 50 条
Contact Elements on Fibered Manifolds
被引:0
|作者:
Ivan Kolář
Włodyimierz M. Mikulski
机构:
[1] Masaryk University,Department of Algebra and Geometry
[2] Janáčkovo nám. 2a,undefined
[3] Institute of Mathematics Jagellonian University,undefined
[4] Reymonta 4,undefined
来源:
关键词:
jet of fibered manifold morphism;
contact element;
Weil bundle;
natural operator;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For every product preserving bundle functor Tμ on fibered manifolds, we describe the underlying functor of any order (r, s, q), s ≥ r ≤ q. We define the bundle \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document} of (k, l)-dimensional contact elements of the order (r, s, q) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ. We also determine all natural transformations of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document} into itself and of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$T\left( {K_{k,l}^{r,s,q} Y} \right)$$
\end{document} into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from Y to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K_{k,l}^{r,s,q} Y$$
\end{document}.
引用
收藏
页码:1017 / 1030
页数:13
相关论文