Quadratic Chabauty for modular curves and modular forms of rank one

被引:0
|
作者
Netan Dogra
Samuel Le Fourn
机构
[1] King’s College London,Department of Mathematics
[2] Strand,undefined
[3] Université Grenoble Alpes,undefined
[4] CNRS,undefined
来源
Mathematische Annalen | 2021年 / 380卷
关键词
11G18; 14G05; 11G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide refined sufficient conditions for the quadratic Chabauty method on a curve X to produce an effective finite set of points containing the rational points X(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {Q}})$$\end{document}, with the condition on the rank of the Jacobian of X replaced by condition on the rank of a quotient of the Jacobian plus an associated space of Chow–Heegner points. We then apply this condition to prove the effective finiteness of X(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {Q}})$$\end{document} for any modular curve X=X0+(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=X_0^+(N)$$\end{document} or Xns+(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathrm{{ns}}^+(N)$$\end{document} of genus at least 2 with N prime. The proof relies on the existence of a quotient of their Jacobians whose Mordell–Weil rank is equal to its dimension (and at least 2), which is proven via analytic estimates for orders of vanishing of L-functions of modular forms, thanks to a Kolyvagin–Logachev type result.
引用
收藏
页码:393 / 448
页数:55
相关论文
共 50 条