Quadratic Chabauty for modular curves and modular forms of rank one

被引:0
|
作者
Netan Dogra
Samuel Le Fourn
机构
[1] King’s College London,Department of Mathematics
[2] Strand,undefined
[3] Université Grenoble Alpes,undefined
[4] CNRS,undefined
来源
Mathematische Annalen | 2021年 / 380卷
关键词
11G18; 14G05; 11G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide refined sufficient conditions for the quadratic Chabauty method on a curve X to produce an effective finite set of points containing the rational points X(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {Q}})$$\end{document}, with the condition on the rank of the Jacobian of X replaced by condition on the rank of a quotient of the Jacobian plus an associated space of Chow–Heegner points. We then apply this condition to prove the effective finiteness of X(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {Q}})$$\end{document} for any modular curve X=X0+(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=X_0^+(N)$$\end{document} or Xns+(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathrm{{ns}}^+(N)$$\end{document} of genus at least 2 with N prime. The proof relies on the existence of a quotient of their Jacobians whose Mordell–Weil rank is equal to its dimension (and at least 2), which is proven via analytic estimates for orders of vanishing of L-functions of modular forms, thanks to a Kolyvagin–Logachev type result.
引用
收藏
页码:393 / 448
页数:55
相关论文
共 50 条
  • [21] QUADRATIC POINTS ON BIELLIPTIC MODULAR CURVES
    Najman, Filip
    Vukorepa, Borna
    MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1791 - 1816
  • [22] CONCENTRATION OF POINTS ON MODULAR QUADRATIC FORMS
    Zumalacarregui, Ana
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1835 - 1839
  • [23] Drinfeld Modular Forms of Arbitrary Rank
    Basson, Dirk
    Breuer, Florian
    Pink, Richard
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 304 (1531)
  • [24] Quadratic minima and modular forms II
    Brent, B
    ACTA ARITHMETICA, 2001, 96 (04) : 381 - 387
  • [25] On Drinfeld modular forms of higher rank
    Gekeler, Ernst-Ulrich
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (03): : 875 - 902
  • [26] ORTHOGONAL DECOMPOSITION OF MODULAR QUADRATIC FORMS
    GERSTEIN, LJ
    INVENTIONES MATHEMATICAE, 1972, 17 (01) : 21 - &
  • [27] THE MODULAR EQUATION AND MODULAR-FORMS OF WEIGHT ONE
    HIRAMATSU, T
    MIMURA, Y
    NAGOYA MATHEMATICAL JOURNAL, 1985, 100 : 145 - 162
  • [28] Modular subgroups, forms, curves and surfaces
    Sebbar, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (02): : 294 - 308
  • [29] On signatures of elliptic curves and modular forms
    Andrzej Dąbrowski
    Jacek Pomykała
    Sudhir Pujahari
    The Ramanujan Journal, 2023, 60 : 505 - 516
  • [30] On signatures of elliptic curves and modular forms
    Dabrowski, Andrzej
    Pomykala, Jacek
    Pujahari, Sudhir
    RAMANUJAN JOURNAL, 2023, 60 (02): : 505 - 516