Interactive relational reinforcement learning of concept semantics

被引:0
|
作者
Matthias Nickles
Achim Rettinger
机构
[1] Technical University of Munich,Department of Computer Science
[2] Karlsruhe Institute of Technology,Institute AIFB
来源
Machine Learning | 2014年 / 94卷
关键词
Reinforcement learning; Concept learning; Symbol grounding; Statistical relational learning; Interactive learning; Meaning disambiguation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a framework for the machine learning of denotational concept semantics using a simple form of symbolic interaction of machines with human users. The capability of software agents and robots to learn how to communicate verbally with human users would obviously be highly useful in several real-world applications, and our framework is meant to provide a further step towards this goal. Whereas the large majority of existing approaches to the machine learning of word sense and other language aspects focuses on learning using text corpora, our framework allows for the interactive learning of concepts in a dialog of human and agent, using an approach in the area of Relational Reinforcement Learning. Such an approach has a wide range of possible applications, e.g., the interactive acquisition of semantic categories for the Semantic Web, Human-Computer Interaction, (interactive) Information Retrieval, and Natural Language Processing.
引用
收藏
页码:169 / 204
页数:35
相关论文
共 50 条
  • [21] Integrating Guidance into Relational Reinforcement Learning
    Kurt Driessens
    Sašo Džeroski
    Machine Learning, 2004, 57 : 271 - 304
  • [22] Relational Verification using Reinforcement Learning
    Chen, Jia
    Wei, Jiayi
    Feng, Yu
    Bastani, Osbert
    Dillig, Isil
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (OOPSLA):
  • [23] Relational macros for transfer in reinforcement learning
    Torrey, Lisa
    Shavlik, Jude
    Walker, Trevor
    Maclin, Richard
    INDUCTIVE LOGIC PROGRAMMING, 2008, 4894 : 254 - +
  • [24] Inverse Reinforcement Learning in Relational Domains
    Munzer, Thibaut
    Piot, Bilal
    Geist, Matthieu
    Pietquin, Olivier
    Lopes, Manuel
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3735 - 3741
  • [25] Online Learning and Exploiting Relational Models in Reinforcement Learning
    Croonenborghs, Tom
    Ramon, Jan
    Blockeel, Hendrik
    Bruynooghe, Maurice
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 726 - 731
  • [26] The Concept of Criticality in Reinforcement Learning
    Spielberg, Yitzhak
    Azaria, Amos
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 251 - 258
  • [27] Interactive Reinforcement Learning with Inaccurate Feedback
    Faulkner, Thylor A. Kessler
    Short, Elaine Schaertl
    Thomaz, Andrea L.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7498 - 7504
  • [28] An experimental study on interactive reinforcement learning
    Nakashima, Tomoharu
    Nakamura, Yosuke
    Uenishi, Takesuke
    Narimoto, Yosuke
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 735 - 740
  • [29] Creating Interactive Crowds with Reinforcement Learning
    Kwiatkowski, Ariel
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12886 - 12887
  • [30] Building relational world models for reinforcement learning
    Walker, Trevor
    Torrey, Lisa
    Shavlik, Jude
    Maclin, Richard
    INDUCTIVE LOGIC PROGRAMMING, 2008, 4894 : 280 - +