A novel cooperative path planning method based on UCR-FCE and behavior regulation for large-scale multi-robot system

被引:0
|
作者
Zeyu Zhou
Wei Tang
Mingyang Li
Jingxi Zhang
Xiongwei Wu
机构
[1] Northwestern Polytechnical University,School of Automation
[2] Northwestern Polytechnical University,School of Power and Energy
来源
Applied Intelligence | 2023年 / 53卷
关键词
Large-scale multi-robot system; Path planning; Multi-path conflict scenarios; UCR-FCE; Behavior regulation;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-robot cooperative path planning is a significant research area in the domains of intelligent reconnaissance, transportation, and combat. The complexity of resolving multi-path conflicts in large-scale multi-robot scenarios poses a significant challenge to researchers. To address this issue, this paper proposed a universal conflict resolution mode, collision avoidance strategy in local crossing, and behavior regulation method that allows robots to take intelligent measures to avoid conflicts in scenarios with a large number of robots. Specifically, we introduced a novel algorithm, Universal Conflict Resolution and Free Crossing Emergence (UCR-FCE), that solves the conflict problem emerging in a significant number of local areas. The algorithm includes three extended multi-path resolution algorithms and a mechanism of avoiding Receptor Dodger (RD) from Noumenon Dodger (ND) to the free junction. We provided a completeness proof with Set Theory and Regional Theory to demonstrate that UCR-FCE can solve all conflict scenarios given sufficient free path nodes. Furthermore, a behavior regulation algorithm was developed to reduce the complexity of real-time path conflicts during robot motion. The proposed multi-robot cooperative intelligent planning algorithm is tested through simulation and field experiments. Results illustrate that the system can effectively refer to the traffic rules and intelligently adapt to ever-changing potential conflicts. A comparative simulation is also established to prove the effectiveness of each improvement proposed in this paper and to exhibit the superiority of the proposed method over other methods available in the literature. Results indicate that the proposed method outperforms eight comparative methods, with an absolute increase in the success planning rate of 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in large-scale multi-robot scenarios, respectively, when the number of robots in ROS-stage simulation environment reaches 400.
引用
收藏
页码:30706 / 30745
页数:39
相关论文
共 50 条
  • [31] Cooperative Path Planning for Persistent Surveillance in Large-Scale Environment with UAV-UGV System
    Wang, Jiahui
    Yang, Kai
    Wu, Baolei
    Wang, Jun
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (12) : 1987 - 2001
  • [32] Cooperative behavior acquisition mechanism for a multi-robot system based on reinforcement learning in continuous space
    IEEE Robotics and Automation Society (Institute of Electrical and Electronics Engineers Inc., United States):
  • [33] Cooperative behavior acquisition mechanism for a multi-robot system based on reinforcement learning in continuous space
    Yasuda, T
    Ohkura, K
    Taura, T
    2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGS, 2003, : 1539 - 1544
  • [34] A multi-level conflict resolution method for large-scale robot system
    Liu, Shuhua
    Tian, Yantao
    Lin, Heping
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 109 - 109
  • [35] Path planning of multi-robot cooperation for avoiding obstacle based on improved artificial potential field method
    Zhaofeng, Yang
    Ruizhe, Zhang
    Sensors and Transducers, 2014, 165 (02): : 221 - 226
  • [36] A multi-scale path-planning method for large-scale scenes based on a framed scale-elastic grid map
    Sun, Yuekun
    Tong, Xiaochong
    Lei, Yi
    Guo, Congzhou
    Lei, Yaxian
    Song, Haoshuai
    An, Zige
    Tang, Jiayi
    Wu, Yibo
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [37] LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
    Chang, Yun
    Ebadi, Kamak
    Denniston, Christopher E.
    Ginting, Muhammad Fadhil
    Rosinol, Antoni
    Reinke, Andrzej
    Palieri, Matteo
    Shi, Jingnan
    Chatterjee, Arghya
    Morrell, Benjamin
    Agha-mohammadi, Ali-akbar
    Carlone, Luca
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 9175 - 9182
  • [38] Distributed PDOP Coverage Control: Providing Large-Scale Positioning Service Using a Multi-Robot System
    Zhang, Liang
    Zhang, Zexu
    Siegwart, Roland
    Chung, Jen Jen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 2217 - 2224
  • [39] Multi-UAV Data Collection and Path Planning Method for Large-Scale Terminal Access
    Zhang, Linfeng
    He, Chuhong
    Peng, Yifeng
    Liu, Zhan
    Zhu, Xiaorong
    SENSORS, 2023, 23 (20)
  • [40] RETRACTED: Large-scale Multi-robot Task Allocation Based on Ant Colony Algorithm (Retracted Article)
    Zhang, Yu
    Liu, Shuhua
    Liu, Jie
    Yu, Chenmu
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 2141 - 2146