A novel cooperative path planning method based on UCR-FCE and behavior regulation for large-scale multi-robot system

被引:0
|
作者
Zeyu Zhou
Wei Tang
Mingyang Li
Jingxi Zhang
Xiongwei Wu
机构
[1] Northwestern Polytechnical University,School of Automation
[2] Northwestern Polytechnical University,School of Power and Energy
来源
Applied Intelligence | 2023年 / 53卷
关键词
Large-scale multi-robot system; Path planning; Multi-path conflict scenarios; UCR-FCE; Behavior regulation;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-robot cooperative path planning is a significant research area in the domains of intelligent reconnaissance, transportation, and combat. The complexity of resolving multi-path conflicts in large-scale multi-robot scenarios poses a significant challenge to researchers. To address this issue, this paper proposed a universal conflict resolution mode, collision avoidance strategy in local crossing, and behavior regulation method that allows robots to take intelligent measures to avoid conflicts in scenarios with a large number of robots. Specifically, we introduced a novel algorithm, Universal Conflict Resolution and Free Crossing Emergence (UCR-FCE), that solves the conflict problem emerging in a significant number of local areas. The algorithm includes three extended multi-path resolution algorithms and a mechanism of avoiding Receptor Dodger (RD) from Noumenon Dodger (ND) to the free junction. We provided a completeness proof with Set Theory and Regional Theory to demonstrate that UCR-FCE can solve all conflict scenarios given sufficient free path nodes. Furthermore, a behavior regulation algorithm was developed to reduce the complexity of real-time path conflicts during robot motion. The proposed multi-robot cooperative intelligent planning algorithm is tested through simulation and field experiments. Results illustrate that the system can effectively refer to the traffic rules and intelligently adapt to ever-changing potential conflicts. A comparative simulation is also established to prove the effectiveness of each improvement proposed in this paper and to exhibit the superiority of the proposed method over other methods available in the literature. Results indicate that the proposed method outperforms eight comparative methods, with an absolute increase in the success planning rate of 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in large-scale multi-robot scenarios, respectively, when the number of robots in ROS-stage simulation environment reaches 400.
引用
收藏
页码:30706 / 30745
页数:39
相关论文
共 50 条
  • [21] Intermittent Deployment for Large-Scale Multi-Robot Forage Perception: Data Synthesis, Prediction, and Planning
    Liu, Jun
    Rangwala, Murtaza
    Ahluwalia, Kulbir Singh
    Ghajar, Shayan
    Dhami, Harnaik
    Tokekar, Pratap
    Tracy, Benjamin
    Williams, Ryan K.
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 27 - 47
  • [22] An Improved Real-Time Path Planning Method Based on Dragonfly Algorithm for Heterogeneous Multi-Robot System
    Ni, Jianjun
    Wang, Xiaotian
    Tang, Min
    Cao, Weidong
    Shi, Pengfei
    Yang, Simon X.
    IEEE ACCESS, 2020, 8 (08): : 140558 - 140568
  • [23] The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment
    Chen, Chin-Sheng
    Lin, Feng-Chieh
    Lin, Chia-Jen
    SENSORS, 2023, 23 (12)
  • [24] Polynomial Time Near-Time-Optimal Multi-Robot Path Planning in Three Dimensions with Applications to Large-Scale UAV Coordination
    Guo, Teng
    Feng, Si Wei
    Yu, Jingjin
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10074 - 10080
  • [25] Probability-based Path Planning for Multi-Robot Systems with Stochastic Behavior in a Grid Map
    Hu, Biao
    Wang, Haonan
    Cao, Zhengcai
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2310 - 2315
  • [26] Behavior Mixing with Minimum Global and Subgroup Connectivity Maintenance for Large-Scale Multi-Robot Systems
    Luo, Wenhao
    Yi, Sha
    Sycara, Katia
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9845 - 9851
  • [27] Motion planning for multi-robot cooperation based on cooperative co-evolutionary roadmap method
    Wang, Mei
    Wu, Tie-Jun
    Jiqiren/Robot, 2006, 28 (02): : 195 - 199
  • [28] Multi-Robot Charged System Search-Based Optimal Path Planning in Static Environments
    Precup, Radu-Emil
    Petriu, Emil M.
    Fedorovici, Lucian-Ovidiu
    Radac, Mircea-Bogdan
    Dragan, Florin
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 1912 - 1917
  • [29] Multi-robot path planning based on improved artificial potential field and fuzzy inference system
    Zhao, Tao
    Li, Haodong
    Dian, Songyi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7621 - 7637
  • [30] Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach
    Matoui, Fethi
    Boussaid, Boumedyen
    Abdelkrim, Mohamed Naceur
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2019, 95 (07): : 637 - 657