A novel cooperative path planning method based on UCR-FCE and behavior regulation for large-scale multi-robot system

被引:0
|
作者
Zeyu Zhou
Wei Tang
Mingyang Li
Jingxi Zhang
Xiongwei Wu
机构
[1] Northwestern Polytechnical University,School of Automation
[2] Northwestern Polytechnical University,School of Power and Energy
来源
Applied Intelligence | 2023年 / 53卷
关键词
Large-scale multi-robot system; Path planning; Multi-path conflict scenarios; UCR-FCE; Behavior regulation;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-robot cooperative path planning is a significant research area in the domains of intelligent reconnaissance, transportation, and combat. The complexity of resolving multi-path conflicts in large-scale multi-robot scenarios poses a significant challenge to researchers. To address this issue, this paper proposed a universal conflict resolution mode, collision avoidance strategy in local crossing, and behavior regulation method that allows robots to take intelligent measures to avoid conflicts in scenarios with a large number of robots. Specifically, we introduced a novel algorithm, Universal Conflict Resolution and Free Crossing Emergence (UCR-FCE), that solves the conflict problem emerging in a significant number of local areas. The algorithm includes three extended multi-path resolution algorithms and a mechanism of avoiding Receptor Dodger (RD) from Noumenon Dodger (ND) to the free junction. We provided a completeness proof with Set Theory and Regional Theory to demonstrate that UCR-FCE can solve all conflict scenarios given sufficient free path nodes. Furthermore, a behavior regulation algorithm was developed to reduce the complexity of real-time path conflicts during robot motion. The proposed multi-robot cooperative intelligent planning algorithm is tested through simulation and field experiments. Results illustrate that the system can effectively refer to the traffic rules and intelligently adapt to ever-changing potential conflicts. A comparative simulation is also established to prove the effectiveness of each improvement proposed in this paper and to exhibit the superiority of the proposed method over other methods available in the literature. Results indicate that the proposed method outperforms eight comparative methods, with an absolute increase in the success planning rate of 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in large-scale multi-robot scenarios, respectively, when the number of robots in ROS-stage simulation environment reaches 400.
引用
收藏
页码:30706 / 30745
页数:39
相关论文
共 50 条
  • [1] A novel cooperative path planning method based on UCR-FCE and behavior regulation for large-scale multi-robot system
    Zhou, Zeyu
    Tang, Wei
    Li, Mingyang
    Zhang, Jingxi
    Wu, Xiongwei
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30706 - 30745
  • [2] Traffic Flow Learning Enhanced Large-Scale Multi-Robot Cooperative Path Planning Under Uncertainties
    Han, Xingyao
    Chen, Siyuan
    Xiong, Xinye
    Liu, Qiming
    Zhou, Shunbo
    Zhang, Heng
    Liu, Zhe
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 16581 - 16587
  • [3] Large-Scale Multi-Robot Coverage Path Planning via Local Search
    Tang, Jingtao
    Ma, Hang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 17567 - 17574
  • [4] Load Balance Optimization Based Multi-robot Cooperative Task Planning for Large-Scale Aerospace Structures
    Lin, Jiamei
    Tian, Wei
    Li, Pengcheng
    Lu, Shaorui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2021, PT II, 2021, 13014 : 797 - 809
  • [5] Multi-robot Path Planning Based on Spatio-Temporal Information in Large-scale Unknown Environment
    Ding, Junfeng
    Zhang, Lin
    Cheng, Jiyu
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [6] Ant system based multi-robot path planning
    Guo Jr., Hung
    Su, Kuo-Lan
    ICIC Express Letters, Part B: Applications, 2011, 2 (02): : 493 - 498
  • [7] Message-Aware Graph Attention Networks for Large-Scale Multi-Robot Path Planning
    Li, Qingbiao
    Lin, Weizhe
    Liu, Zhe
    Prorok, Amanda
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 5533 - 5540
  • [8] A NOVEL PATH PLANNING APPROACH FOR MULTI-ROBOT BASED TRANSPORTATION
    Wang, Ting
    Sabourin, Cristophe
    Madani, Kurosh
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2013, 28 (03): : 218 - 225
  • [9] Programming Large-Scale Multi-Robot System with Timing Constraints
    Jiang, Shan
    Cao, Jiannong
    Liu, Yang
    Chen, Jinlin
    Liu, Xuefeng
    2016 25TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN), 2016,
  • [10] Progresses in Multi-Robot Cooperative Additive Manufacturing of Large-Scale Metal Parts
    Li Y.
    Li C.
    Zhou Y.
    Zhang G.
    Meng L.
    Li M.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (05): : 664 - 678