XCOVNet: Chest X-ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks

被引:0
|
作者
Vishu Madaan
Aditya Roy
Charu Gupta
Prateek Agrawal
Anand Sharma
Cristian Bologa
Radu Prodan
机构
[1] Lovely Professional University,
[2] Bhagwan Parshuram Institute of Technology,undefined
[3] University of Klagenfurt,undefined
[4] Mody University of Science and Technology,undefined
[5] Babes-Bolyai University,undefined
来源
New Generation Computing | 2021年 / 39卷
关键词
Coronavirus; SARS-COV-2; COVID-19 disease diagnosis; Machine learning; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
COVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.
引用
收藏
页码:583 / 597
页数:14
相关论文
共 50 条
  • [21] Detection of Covid-19 based on convolutional neural networks using pre-processed chest X-ray images
    Raj, Arul A. M.
    Sugumar, R.
    Padmkala, S.
    Giri, Jayant
    Ahmad, Naim
    Badawy, Ahmed Said
    AIP ADVANCES, 2024, 14 (03)
  • [22] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864
  • [23] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Asmaa Abbas
    Mohammed M. Abdelsamea
    Mohamed Medhat Gaber
    Applied Intelligence, 2021, 51 : 854 - 864
  • [24] Ensemble of Convolutional Neural Networks for COVID-19 Localization on Chest X-ray Images
    Marcomini, Karem D.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (08)
  • [25] Automated diagnosis of COVID-19 using chest X-ray image processing by a Convolutional Neural Network
    Alotaib, Reem
    Alharbi, Abir
    Algethami, Abdulaziz
    Alkenawi, Abdulkader
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (02) : 224 - 244
  • [26] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [27] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [28] Using Convolutional Neural Network for Chest X-ray Image classification
    Soric, Matija
    Pongrac, Danijela
    Inza, Inaki
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1771 - 1776
  • [29] Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification
    El-Kenawy, El-Sayed M.
    Mirjalili, Seyedali
    Ibrahim, Abdelhameed
    Alrahmawy, Mohammed
    El-Said, M.
    Zaki, Rokaia M.
    Eid, Marwa Metwally
    IEEE ACCESS, 2021, 9 : 36019 - 36037
  • [30] DETECTION OF COVID-19 CHEST X-RAY USING SUPPORT VECTOR MACHINE AND CONVOLUTIONAL NEURAL NETWORK
    Novitasari, Dian Candra Rini
    Hendradi, Rimuljo
    Caraka, Rezzy Eko
    Rachmawati, Yuanita
    Fanani, Nurul Zainal
    Syarifudin, Anang
    Toharudin, Toni
    Chen, Rung Ching
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2020, : 1 - 19