Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network

被引:0
|
作者
Asmaa Abbas
Mohammed M. Abdelsamea
Mohamed Medhat Gaber
机构
[1] Faculty of Science,Mathematics Department
[2] Assiut University,School of Computing and Digital Technology
[3] Birmingham City University,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
DeTraC; Covolutional neural networks; COVID-19 detection; Chest X-ray images; Data irregularities;
D O I
暂无
中图分类号
学科分类号
摘要
Chest X-ray is the first imaging technique that plays an important role in the diagnosis of COVID-19 disease. Due to the high availability of large-scale annotated image datasets, great success has been achieved using convolutional neural networks (CNN s) for image recognition and classification. However, due to the limited availability of annotated medical images, the classification of medical images remains the biggest challenge in medical diagnosis. Thanks to transfer learning, an effective mechanism that can provide a promising solution by transferring knowledge from generic object recognition tasks to domain-specific tasks. In this paper, we validate and a deep CNN, called Decompose, Transfer, and Compose (DeTraC), for the classification of COVID-19 chest X-ray images. DeTraC can deal with any irregularities in the image dataset by investigating its class boundaries using a class decomposition mechanism. The experimental results showed the capability of DeTraC in the detection of COVID-19 cases from a comprehensive image dataset collected from several hospitals around the world. High accuracy of 93.1% (with a sensitivity of 100%) was achieved by DeTraC in the detection of COVID-19 X-ray images from normal, and severe acute respiratory syndrome cases.
引用
收藏
页码:854 / 864
页数:10
相关论文
共 50 条
  • [1] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864
  • [2] Detection of COVID-19 Using Deep Convolutional Neural Network on Chest X-Ray (CXR) Images
    Tang, Goon Sheng
    Chow, Li Sze
    Solihin, Mahmud Iwan
    Ramli, Norlisah
    Gowdh, Nadia Fareeda
    Rahmat, Kartini
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [3] Automated COVID-19 detection using Deep Convolutional Neural Network and Chest X-ray Images
    Agrawal, Tarun
    Choudhary, Prakash
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 277 - 281
  • [4] A Simplified Convolutional Neural Network Design for COVID-19 Classification on Chest X-ray Images
    Sae-Lim, Wannipa
    Suwannanon, Ruedeekorn
    Aiyarak, Pattara
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [5] Classification of Chest X-ray Images Using Deep Convolutional Neural Network
    Hao, Ting
    Lu, Tong
    Li, Xia
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 440 - 445
  • [6] COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID
    de Sousa P.M.
    Carneiro P.C.
    Oliveira M.M.
    Pereira G.M.
    da Costa Junior C.A.
    de Moura L.V.
    Mattjie C.
    da Silva A.M.M.
    Patrocinio A.C.
    Research on Biomedical Engineering, 2022, 38 (1) : 87 - 97
  • [7] Detection of COVID-19 in Chest X-ray images using Transfer Learning with Deep Convolutional Neural Network
    Vogado, Luis
    Vieira, Pablo
    Neto, Pedro Santos
    Lopes, Lucas
    Silva, Gleison
    Araujo, Flavio
    Veras, Rodrigo
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 629 - 636
  • [8] Detection and Classification of COVID 19 using Convolutional Neural Network from Chest X-ray Images
    Chakravorti, Tatiana
    Addala, Vinay Kumar
    Verma, J. Shivam
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [9] An Enhanced Technique of COVID-19 Detection and Classification Using Deep Convolutional Neural Network from Chest X-Ray and CT Images
    Islam, Md Khairul
    Rahman, Md Mahbubur
    Ali, Md Shahin
    Miah, Md Sipon
    Rahman, Md Habibur
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [10] An automatic COVID-19 diagnosis from chest X-ray images using a deep trigonometric convolutional neural network
    Khishe, Mohammad
    IMAGING SCIENCE JOURNAL, 2023, 71 (02): : 128 - 141