Lower bounds on the minimum distance of long codes in the Lee metric

被引:0
|
作者
Hugues Randriam
Lin Sok
Patrick Solé
机构
[1] Telecom ParisTech,Mathematics Department
[2] King Abdulaziz University,undefined
来源
关键词
Lee metric; Geometric codes; Ihara function; Gilbert bound; 94B65; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
The Gilbert type bound for codes in the title is reviewed, both for small and large alphabets. Constructive lower bounds better than these existential bounds are derived from geometric codes, either over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p$$\end{document} or Fp2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _{p^2},$$\end{document} or over even degree extensions of Fp.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p.$$\end{document} In the latter case the approach is concatenation with a good code for the Hamming metric as outer code and a short code for the Lee metric as an inner code. In the former case lower bounds on the minimum Lee distance are derived by algebraic geometric arguments inspired by results of Wu et al. (Electron Lett 15(43):820–821, 2007).
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条