Anisotropic Kepler and anisotropic two fixed centres problems

被引:0
|
作者
Andrzej J. Maciejewski
Maria Przybylska
Wojciech Szumiński
机构
[1] University of Zielona Góra,Janusz Gil Institute of Astronomy
[2] University of Zielona Góra,Institute of Physics
关键词
Anisotropic Kepler problem; Anisotropic two fixed centres problem; Morales–Ramis theory; Differential Galois theory; Non-integrability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton’s law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.
引用
收藏
页码:163 / 184
页数:21
相关论文
共 50 条
  • [1] Anisotropic Kepler and anisotropic two fixed centres problems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    Szuminski, Wojciech
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 127 (02): : 163 - 184
  • [2] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [3] Anisotropic inverse problems in two dimensions
    Sun, ZQ
    Uhlmann, G
    INVERSE PROBLEMS, 2003, 19 (05) : 1001 - 1010
  • [4] COLLISION ORBITS IN ANISOTROPIC KEPLER PROBLEM
    DEVANEY, RL
    INVENTIONES MATHEMATICAE, 1978, 45 (03) : 221 - 251
  • [5] ANISOTROPIC KEPLER PROBLEM IN 2 DIMENSIONS
    GUTZWILLER, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (01) : 139 - 152
  • [6] Stability and instability in the anisotropic Kepler problem
    Contopoulos, G
    Harsoula, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 8897 - 8920
  • [7] Orbit systematics in anisotropic Kepler problem
    Kubo, Kazuhiro
    Shimada, Tokuzo
    ARTIFICIAL LIFE AND ROBOTICS, 2008, 13 (01) : 218 - 222
  • [8] First kind symmetric periodic solutions and their stability for the Kepler problem and anisotropic Kepler problem plus generalized anisotropic perturbation
    Alberti, Angelo
    Vidal, Claudio
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [9] First kind symmetric periodic solutions and their stability for the Kepler problem and anisotropic Kepler problem plus generalized anisotropic perturbation
    Alberti, Angelo
    Vidal, Claudio
    Nonlinear Analysis: Real World Applications, 2021, 58
  • [10] Periodic orbits for anisotropic perturbations of the Kepler problem
    Escalona-Buendia, A. H.
    Perez-Chavela, E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 591 - 601