Anisotropic Kepler and anisotropic two fixed centres problems

被引:0
|
作者
Andrzej J. Maciejewski
Maria Przybylska
Wojciech Szumiński
机构
[1] University of Zielona Góra,Janusz Gil Institute of Astronomy
[2] University of Zielona Góra,Institute of Physics
关键词
Anisotropic Kepler problem; Anisotropic two fixed centres problem; Morales–Ramis theory; Differential Galois theory; Non-integrability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton’s law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.
引用
收藏
页码:163 / 184
页数:21
相关论文
共 50 条
  • [31] The Kepler problem with anisotropic perturbations -: art. no. 072701
    Diacu, F
    Pérez-Chavela, E
    Santoprete, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [32] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Barutello, Vivina
    Terracini, Susanna
    Verzini, Gianmaria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (02) : 583 - 609
  • [33] MULTIFRACTAL MEASURES AND STABILITY ISLANDS IN THE ANISOTROPIC KEPLER-PROBLEM
    GUTZWILLER, MC
    PHYSICA D, 1989, 38 (1-3): : 160 - 171
  • [34] Realization of Anisotropic Diamagnetic Kepler Problem in a Solid State Environment
    Chen, Zhanghai
    Zhou, Weihang
    Zhang, Bo
    Yu, C. H.
    Zhu, Jingbing
    Lu, Wei
    Shen, S. C.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [35] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Iguchi, Shota
    Shibayama, Mitsuru
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (03):
  • [36] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Vivina Barutello
    Susanna Terracini
    Gianmaria Verzini
    Archive for Rational Mechanics and Analysis, 2013, 207 : 583 - 609
  • [37] EXPONENTIAL INSTABILITY OF COLLISION ORBIT IN THE ANISOTROPIC KEPLER-PROBLEM
    YOSHIDA, H
    CELESTIAL MECHANICS, 1987, 40 (01): : 51 - 66
  • [38] Anisotropic nonlinear Neumann problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (3-4) : 323 - 354
  • [39] Anisotropic Geometrodynamics in Cosmological Problems
    Siparov, Sergey
    MATHEMATICS AND ASTRONOMY: A JOINT LONG JOURNEY, 2010, 1283 : 222 - 230
  • [40] PROBLEMS OF POTENTIAL IN ANISOTROPIC SOLUTIONS
    CASTELLANOS, A
    PANIZO, M
    RIVAS, J
    ANALES DE FISICA, 1976, 72 (04): : 248 - 252