hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems

被引:0
|
作者
Thirupathi Gudi
Neela Nataraj
Amiya K. Pani
机构
[1] Indian Institute of Technology Bombay,Industrial Mathematics Group, Department of Mathematics
来源
Numerische Mathematik | 2008年 / 109卷
关键词
65N12; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have analyzed a one parameter family of hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\nabla \cdot {\rm a} (u, \nabla u) + f (u, \nabla u) = 0$$\end{document} with Dirichlet boundary conditions. These methods depend on the values of the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\in[-1,1]$$\end{document} , where θ =  + 1 corresponds to the nonsymmetric and θ = −1 corresponds to the symmetric interior penalty methods when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm a}(u,\nabla u)={\nabla}u$$\end{document} and f(u,∇u) = −f, that is, for the Poisson problem. The error estimate in the broken H1 norm, which is optimal in h (mesh size) and suboptimal in p (degree of approximation) is derived using piecewise polynomials of degree p ≥ 2, when the solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in H^{5/2}(\Omega)$$\end{document} . In the case of linear elliptic problems also, this estimate is optimal in h and suboptimal in p. Further, optimal error estimate in the L2 norm when θ = −1 is derived. Numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:233 / 268
页数:35
相关论文
共 50 条
  • [1] hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    NUMERISCHE MATHEMATIK, 2008, 109 (02) : 233 - 268
  • [2] A posteriori error estimates of hp-discontinuous Galerkin method for strongly nonlinear elliptic problems
    Bi, Chunjia
    Wang, Cheng
    Lin, Yanping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 140 - 166
  • [3] MULTIGRID ALGORITHMS FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Sarti, Marco
    Verani, Marco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 598 - 618
  • [4] Superconvergence of Discontinuous Galerkin Methods for Elliptic Boundary Value Problems
    Limin Ma
    Journal of Scientific Computing, 2021, 88
  • [5] Superconvergence of Discontinuous Galerkin Methods for Elliptic Boundary Value Problems
    Ma, Limin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [6] hp-discontinuous Galerkin time stepping for parabolic problems
    Werder, T
    Gerdes, K
    Schötzau, D
    Schwab, C
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (49-50) : 6685 - 6708
  • [7] AN ADAPTIVE hp-DISCONTINUOUS GALERKIN APPROACH FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Dolejsi, Vit
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 72 - 82
  • [8] Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems
    Heimann F.
    Lehrenfeld C.
    Stocker P.
    Von Wahl H.
    ESAIM: Mathematical Modelling and Numerical Analysis, 2023, 57 (05) : 2803 - 2833
  • [9] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Christoph Erath
    Lorenzo Mascotto
    Jens M. Melenk
    Ilaria Perugia
    Alexander Rieder
    Journal of Scientific Computing, 2022, 92
  • [10] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)