An efficient algorithm for distance total domination in block graphs

被引:0
|
作者
Yancai Zhao
Erfang Shan
机构
[1] Wuxi City College of Vocational Technology,Department of Basic Science
[2] Shanghai University,School of Management
来源
关键词
Graph algorithm; Total domination; -Distance total domination; Block graph; 05C85; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-distance total domination problem is to find a minimum vertex set D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of a graph such that every vertex of the graph is within distance k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} from some vertex of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} other than itself, where k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is a fixed positive integer. In the present paper, by using a labeling method, we design an efficient algorithm for solving the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-distance total domination problem on block graphs, a superclass of trees.
引用
收藏
页码:372 / 381
页数:9
相关论文
共 50 条
  • [41] On matching and total domination in graphs
    Henning, Michael A.
    Kang, Liying
    Shan, Erfang
    Yeo, Anders
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2313 - 2318
  • [42] Total mixed domination in graphs
    Kazemi, Adel P.
    Kazemnejad, Farshad
    Moradi, Somayeh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 229 - 237
  • [43] Restricted total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 25 - 44
  • [44] Disjunctive total domination in graphs
    Henning, Michael A.
    Naicker, Viroshan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1090 - 1110
  • [45] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    ARS COMBINATORIA, 2012, 107 : 473 - 492
  • [46] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    1600, Charles Babbage Research Centre (112): : 231 - 240
  • [47] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [48] Minus total domination in graphs
    Hua-Ming Xing
    Hai-Long Liu
    Czechoslovak Mathematical Journal, 2009, 59 : 861 - 870
  • [49] Unique total domination graphs
    Fischermann, M
    ARS COMBINATORIA, 2004, 73 : 289 - 297
  • [50] Total restrained domination in graphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) : 2892 - 2898