An efficient algorithm for distance total domination in block graphs

被引:0
|
作者
Yancai Zhao
Erfang Shan
机构
[1] Wuxi City College of Vocational Technology,Department of Basic Science
[2] Shanghai University,School of Management
来源
关键词
Graph algorithm; Total domination; -Distance total domination; Block graph; 05C85; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-distance total domination problem is to find a minimum vertex set D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of a graph such that every vertex of the graph is within distance k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} from some vertex of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} other than itself, where k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is a fixed positive integer. In the present paper, by using a labeling method, we design an efficient algorithm for solving the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-distance total domination problem on block graphs, a superclass of trees.
引用
收藏
页码:372 / 381
页数:9
相关论文
共 50 条
  • [21] On domination number and distance in graphs
    Kang, Cong X.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 203 - 206
  • [22] Generalized domination and efficient domination in graphs
    Department of Mathematics, University of Wisconsin-LaCrosse, LaCrosse, WI 54601, United States
    不详
    Discrete Math, 1-3 (1-11):
  • [23] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [24] An algorithm for the secure total domination problem in proper interval graphs
    Araki, Toru
    Aita, Yasufumi
    THEORETICAL COMPUTER SCIENCE, 2024, 1011
  • [25] Power domination in block graphs
    Xu, Guangjun
    Kang, Liying
    Shan, Erfang
    Zhao, Min
    THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) : 299 - 305
  • [26] ON THE TOTAL DOMINATION NUMBEROF TOTAL GRAPHS
    Cabrera-Martinez, Abel
    Sanchez, Jose L.
    Sigarreta Almira, Jose M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 933 - 951
  • [27] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [28] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [29] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146
  • [30] Total Roman domination and total domination in unit disk graphs
    Rout, Sasmita
    Mishra, Pawan Kumar
    Das, Gautam Kumar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,