On the relation between entropy and the average complexity of trajectories in dynamical systems

被引:0
|
作者
F. Blume
机构
[1] Department of Mathematics,
[2] John Brown University,undefined
[3] Siloam Springs,undefined
[4] AR 72761,undefined
[5] USA,undefined
[6] e-mail: fblume@acc.jbu.edu ,undefined
来源
关键词
Keywords. Entropy, measure-preserving transformations, algorithmic complexity, convergence rates.;
D O I
暂无
中图分类号
学科分类号
摘要
If (X,T) is a measure-preserving system, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha $\end{document} a nontrivial partition of X into two sets and f a positive increasing function defined on the positive real numbers, then the limit inferior of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \{2H(\alpha_{0}^{n-1})/f(n)\}_{n=1}^{\infty} $\end{document} is greater than or equal to the limit inferior of the sequence of quotients of the average complexity of trajectories of length n generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha_{0}^{n-1} $\end{document} and nf(log2(n))/log2(n). A similar statement also holds for the limit superior.
引用
收藏
页码:146 / 155
页数:9
相关论文
共 50 条
  • [31] Naive entropy of dynamical systems
    Peter Burton
    Israel Journal of Mathematics, 2017, 219 : 637 - 659
  • [32] SYMMETRY AND COMPLEXITY IN DYNAMICAL SYSTEMS
    Mainzer, Klaus
    SYMMETRY-CULTURE AND SCIENCE, 2015, 26 (01): : 5 - 38
  • [33] Complexity of sequences and dynamical systems
    Ferenczi, S
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 145 - 154
  • [34] THE EXISTENCE OF ENTROPY FOR DYNAMICAL SYSTEMS
    KOZLOVSKII, VK
    SOVIET PHYSICS-SOLID STATE, 1960, 2 (05): : 841 - 846
  • [35] Structural Complexity and Dynamical Systems
    Ricca, Renzo L.
    LECTURES ON TOPOLOGICAL FLUID MECHANICS, 2009, 1973 : 167 - 186
  • [36] Logical entropy of dynamical systems
    Markechova, Dagmar
    Ebrahimzadeh, Abolfazl
    Giski, Zahra Eslami
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [37] Scaled Entropy for Dynamical Systems
    Zhao, Yun
    Pesin, Yakov
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (02) : 447 - 475
  • [38] Stabilization of Optimal Trajectories of Dynamical Systems
    Kaspirovich, Ivan E.
    Mukharlyamov, Robert G.
    PROCEEDINGS OF THE IUTAM SYMPOSIUM ON OPTIMAL GUIDANCE AND CONTROL FOR AUTONOMOUS SYSTEMS 2023, 2024, 40 : 237 - 250
  • [39] Relations between average case complexity and approximation complexity
    Feige, U
    17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 5 - 5
  • [40] Average probe complexity in quorum systems
    Hassin, Y
    Peleg, D
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (04) : 592 - 616