On the relation between entropy and the average complexity of trajectories in dynamical systems

被引:0
|
作者
F. Blume
机构
[1] Department of Mathematics,
[2] John Brown University,undefined
[3] Siloam Springs,undefined
[4] AR 72761,undefined
[5] USA,undefined
[6] e-mail: fblume@acc.jbu.edu ,undefined
来源
关键词
Keywords. Entropy, measure-preserving transformations, algorithmic complexity, convergence rates.;
D O I
暂无
中图分类号
学科分类号
摘要
If (X,T) is a measure-preserving system, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha $\end{document} a nontrivial partition of X into two sets and f a positive increasing function defined on the positive real numbers, then the limit inferior of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \{2H(\alpha_{0}^{n-1})/f(n)\}_{n=1}^{\infty} $\end{document} is greater than or equal to the limit inferior of the sequence of quotients of the average complexity of trajectories of length n generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha_{0}^{n-1} $\end{document} and nf(log2(n))/log2(n). A similar statement also holds for the limit superior.
引用
收藏
页码:146 / 155
页数:9
相关论文
共 50 条
  • [21] Dynamical systems with entropy operator
    Popkov Yu.S.
    Computational Mathematics and Modeling, 2000, 11 (2) : 181 - 186
  • [22] Entropy of Nonautonomous Dynamical Systems
    Kawan, Christoph
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 179 - 191
  • [23] THE ENTROPY OF COUNTABLE DYNAMICAL SYSTEMS
    Ebrahimzadeh, A.
    Ebrahimi, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 107 - 114
  • [24] Complexity for extended dynamical systems
    Bonanno, Claudio
    Collet, Pierre
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (03) : 721 - 748
  • [25] Logical entropy of dynamical systems
    Dagmar Markechová
    Abolfazl Ebrahimzadeh
    Zahra Eslami Giski
    Advances in Difference Equations, 2018
  • [26] Complexity for Extended Dynamical Systems
    Claudio Bonanno
    Pierre Collet
    Communications in Mathematical Physics, 2007, 275 : 721 - 748
  • [27] NAIVE ENTROPY OF DYNAMICAL SYSTEMS
    Burton, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (02) : 637 - 659
  • [28] ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS
    Zhu, Yujun
    Liu, Zhaofeng
    Xu, Xueli
    Zhang, Wenda
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 165 - 185
  • [29] Entropy and irreversibility in dynamical systems
    Penrose, Oliver
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2005):
  • [30] Scaled Entropy for Dynamical Systems
    Yun Zhao
    Yakov Pesin
    Journal of Statistical Physics, 2015, 158 : 447 - 475