Optimal complexity and certification of Bregman first-order methods

被引:0
|
作者
Radu-Alexandru Dragomir
Adrien B. Taylor
Alexandre d’Aspremont
Jérôme Bolte
机构
[1] Université Toulouse I Capitole,INRIA
[2] D.I. Ecole Normale Supérieure,CNRS and D.I., UMR 8548
[3] D.I. École Normale Supérieure,TSE
[4] École Normale Supérieure,undefined
[5] Université Toulouse 1 Capitole,undefined
来源
Mathematical Programming | 2022年 / 194卷
关键词
90C25; 90C06; 90C60; 90C22; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a lower bound showing that the O(1/k) convergence rate of the NoLips method (a.k.a. Bregman Gradient or Mirror Descent) is optimal for the class of problems satisfying the relative smoothness assumption. This assumption appeared in the recent developments around the Bregman Gradient method, where acceleration remained an open issue. The main inspiration behind this lower bound stems from an extension of the performance estimation framework of Drori and Teboulle (Mathematical Programming, 2014) to Bregman first-order methods. This technique allows computing worst-case scenarios for NoLips in the context of relatively-smooth minimization. In particular, we used numerically generated worst-case examples as a basis for obtaining the general lower bound.
引用
收藏
页码:41 / 83
页数:42
相关论文
共 50 条
  • [21] COMPLEXITY-OPTIMAL AND PARAMETER-FREE FIRST-ORDER METHODS FOR FINDING STATIONARY POINTS OF COMPOSITE OPTIMIZATION PROBLEMS
    Kong, Weiwei
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (03) : 3005 - 3032
  • [22] Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity
    Masoud Ahookhosh
    Mathematical Methods of Operations Research, 2019, 89 : 319 - 353
  • [23] Physical Computational Complexity and First-order Logic
    Whyman, Richard
    FUNDAMENTA INFORMATICAE, 2021, 181 (2-3) : 129 - 161
  • [24] The Complexity of Decomposing Modal and First-Order Theories
    Goeller, Stefan
    Jung, Jean Christoph
    Lohrey, Markus
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 325 - 334
  • [25] The complexity of definability by open first-order formulas
    Areces, Carlos
    Campercholi, Miguel
    Penazzi, Daniel
    Ventura, Pablo
    LOGIC JOURNAL OF THE IGPL, 2020, 28 (06) : 1093 - 1105
  • [26] ON THE FIRST-ORDER COMPLEXITY OF INDUCED SUBGRAPH ISOMORPHISM
    Verbitsky, Oleg
    Zhukovskii, Maksim
    LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (01) : 25:1 - 25:24
  • [27] The Complexity of Decomposing Modal and First-Order Theories
    Goeller, Stefan
    Jung, Jean-Christoph
    Lohrey, Markus
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2015, 16 (01)
  • [28] Complexity of existential positive first-order logic
    Bodirsky, Manuel
    Hermann, Miki
    Richoux, Florian
    JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (04) : 753 - 760
  • [29] On the Parameterized Complexity of Learning First-Order Logic
    van Bergerem, Steffen
    Grohe, Martin
    Ritzert, Martin
    PROCEEDINGS OF THE 41ST ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '22), 2022, : 337 - 346
  • [30] Complexity of Existential Positive First-Order Logic
    Bodirsky, Manuel
    Hermann, Miki
    Richoux, Florian
    MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 31 - 36