Optimal complexity and certification of Bregman first-order methods

被引:0
|
作者
Radu-Alexandru Dragomir
Adrien B. Taylor
Alexandre d’Aspremont
Jérôme Bolte
机构
[1] Université Toulouse I Capitole,INRIA
[2] D.I. Ecole Normale Supérieure,CNRS and D.I., UMR 8548
[3] D.I. École Normale Supérieure,TSE
[4] École Normale Supérieure,undefined
[5] Université Toulouse 1 Capitole,undefined
来源
Mathematical Programming | 2022年 / 194卷
关键词
90C25; 90C06; 90C60; 90C22; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a lower bound showing that the O(1/k) convergence rate of the NoLips method (a.k.a. Bregman Gradient or Mirror Descent) is optimal for the class of problems satisfying the relative smoothness assumption. This assumption appeared in the recent developments around the Bregman Gradient method, where acceleration remained an open issue. The main inspiration behind this lower bound stems from an extension of the performance estimation framework of Drori and Teboulle (Mathematical Programming, 2014) to Bregman first-order methods. This technique allows computing worst-case scenarios for NoLips in the context of relatively-smooth minimization. In particular, we used numerically generated worst-case examples as a basis for obtaining the general lower bound.
引用
收藏
页码:41 / 83
页数:42
相关论文
共 50 条
  • [1] Optimal complexity and certification of Bregman first-order methods
    Dragomir, Radu-Alexandru
    Taylor, Adrien B.
    D'Aspremont, Alexandre
    Bolte, Jerome
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 41 - 83
  • [2] An acceleration procedure for optimal first-order methods
    Baes, Michel
    Buergisser, Michael
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (03): : 610 - 628
  • [3] The complexity of first-order optimization methods from a metric perspective
    Lewis, A. S.
    Tian, Tonghua
    MATHEMATICAL PROGRAMMING, 2024,
  • [4] The complexity of first-order optimization methods from a metric perspective
    Lewis, Adrian S.
    Tian, Tonghua
    arXiv, 2023,
  • [5] On optimal universal first-order methods for minimizing heterogeneous sums
    Grimmer, Benjamin
    OPTIMIZATION LETTERS, 2024, 18 (02) : 427 - 445
  • [6] On optimal universal first-order methods for minimizing heterogeneous sums
    Benjamin Grimmer
    Optimization Letters, 2024, 18 : 427 - 445
  • [7] Iteration-complexity of first-order penalty methods for convex programming
    Lan, Guanghui
    Monteiro, Renato D. C.
    MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 115 - 139
  • [8] Iteration-complexity of first-order penalty methods for convex programming
    Guanghui Lan
    Renato D. C. Monteiro
    Mathematical Programming, 2013, 138 : 115 - 139
  • [9] On the complexity of the first-order random theory
    Lotfallah, WB
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (02) : 261 - 271
  • [10] Complexity parameters for first-order classes
    Arias, M
    Khardon, R
    INDUCTIVE LOGIC PROGRAMMING, PROCEEDINGS, 2003, 2835 : 22 - 37