An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata

被引:0
|
作者
B. Naresh Kumar Reddy
B. Veena Vani
G. Bhavya Lahari
机构
[1] Faculty of Science and Technology,Department of Electronics and Communication Engineering
[2] ICFAI Foundation for Higher Education,Department of Electrical Engineering
[3] AITS,Department of Electronics and Computer Engineering
[4] K.L. University,undefined
来源
Telecommunication Systems | 2020年 / 74卷
关键词
Quantum-dot cellular automata (QCA); Majority gate; Inverter; FPGA board; Vedic multiplier;
D O I
暂无
中图分类号
学科分类号
摘要
The Quantum-Dot Cellular Automata (QCA) is an incipient nanotechnology in contrast to the CMOS technology with appealing features like low power consumption, high speed and reduced size in implementing the architecture for the computations. QCA provides better and well-organised solution with a modern and exclusive result in performing logical computations at Nano-scale. In this paper mainly focused on design and implementation of 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier with the help of 4 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 4 Vedic multiplier using Nikhilam and Anurupayan Sutra. The simulation results achieved with the help of QCA Designer tool shows that the area and delay of the proposed 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier is decreased by an average of 45.8% and 72.6%, 82.5% and 80.7%, and 17.24% and 21% respectively when compared to 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Array multiplier, 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Wallace multiplier, and 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Urdhva Tiryagbhyam Vedic multiplier. Furthermore, the proposed multiplier is implemented on Kintex-7 (KC705) FPGA board. The results revealed a reduction in area and delay compared to a well-known prior art multipliers.
引用
收藏
页码:487 / 496
页数:9
相关论文
共 50 条
  • [21] Quantum-dot cellular automata serial decimal digit multiplier
    Gladshtein, Michael
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2025, 24 (02)
  • [22] Design and Implementation of Approximate DCT Architecture in Quantum-Dot Cellular Automata
    Bahar, Ali Newaz
    Wahid, Khan A.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (12) : 2530 - 2539
  • [23] Design Rules for Quantum-dot Cellular Automata
    Liu, Weiqiang
    Lu, Liang
    O'Neill, Maire
    Swartzlander, Earl E., Jr.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2361 - 2364
  • [24] NanoRouter: A Quantum-dot Cellular Automata Design
    Sardinha, Luiz H. B.
    Costa, Artur M. M.
    Vilela Neto, Omar P.
    Vieira, Luiz F. M.
    Vieira, Marcos A. M.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (12) : 825 - 834
  • [25] Efficient Design of a Coplanar Adder/Subtractor in Quantum-dot Cellular Automata
    Sangsefidi, Milad
    Karimpour, Morteza
    Sarayloo, Mandiyar
    UKSIM-AMSS NINTH IEEE EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2015), 2015, : 456 - 461
  • [26] Design of Novel Efficient XOR Gates for Quantum-Dot Cellular Automata
    Hayati, Mohsen
    Rezaei, Abbas
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 643 - 647
  • [27] Quantum-dot cellular automata design guideline
    Kim, Kyosun
    Wu, Kaijie
    Karri, Ramesh
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (06): : 1607 - 1614
  • [28] Design of novel efficient adder and subtractor for quantum-dot cellular automata
    Hayati, Mohsen
    Rezaei, Abbas
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2015, 43 (10) : 1446 - 1454
  • [29] Design of Efficient Quantum-Dot Cellular Automata (QCA) MAC Unit
    Gassoumi, Ismail
    Touil, Lamjed
    Ouni, Bouraoui
    2018 30TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2018, : 1 - 4
  • [30] Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology
    Touil, Lamjed
    Gassoumi, Ismail
    Laajimi, Radhouane
    Ouni, Bouraoui
    IET IMAGE PROCESSING, 2018, 12 (06) : 1020 - 1030