Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution

被引:0
|
作者
Jianning Li
Christina Gsaxner
Antonio Pepe
Dieter Schmalstieg
Jens Kleesiek
Jan Egger
机构
[1] University Medicine Essen (AöR),Institute for AI in Medicine (IKIM)
[2] Graz University of Technology,Institute of computer graphics and vision
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them suboptimal for spatially sparse data. In this paper, we propose a CNN model based on sparse tensors for efficient processing of high-resolution shapes represented as binary voxel occupancy grids. In contrast to a dense CNN that takes the entire voxel grid as input, a sparse CNN processes only on the non-empty voxels, thus reducing the memory and computation overhead caused by the sparse input data. We evaluate our method on two clinically relevant skull reconstruction tasks: (1) given a defective skull, reconstruct the complete skull (i.e., skull shape completion), and (2) given a coarse skull, reconstruct a high-resolution skull with fine geometric details (shape super-resolution). Our method outperforms its dense CNN-based counterparts in the skull reconstruction task quantitatively and qualitatively, while requiring substantially less memory for training and inference. We observed that, on the 3D skull data, the overall memory consumption of the sparse CNN grows approximately linearly during inference with respect to the image resolutions. During training, the memory usage remains clearly below increases in image resolution—an ×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 8$$\end{document} increase in voxel number leads to less than ×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 4$$\end{document} increase in memory requirements. Our study demonstrates the effectiveness of using a sparse CNN for skull reconstruction tasks, and our findings can be applied to other spatially sparse problems. We prove this by additional experimental results on other sparse medical datasets, like the aorta and the heart. Project page at https://github.com/Jianningli/SparseCNN.
引用
收藏
相关论文
共 50 条
  • [41] Image Super-resolution Reconstruction Algorithm Based on Convolutional Neural Network
    He Jingxuan
    Zhang Jian
    Zhang Yonghui
    Wang Rong
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 267 - 271
  • [42] CONVOLUTIONAL NEURAL NETWORK FOR BLIND QUALITY EVALUATOR OF IMAGE SUPER-RESOLUTION
    Fang, Yuming
    Zhang, Chi
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 28 - 33
  • [43] Multi-Memory Convolutional Neural Network for Video Super-Resolution
    Wang, Zhongyuan
    Yi, Peng
    Jiang, Kui
    Jiang, Junjun
    Han, Zhen
    Lu, Tao
    Ma, Jiayi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (05) : 2530 - 2544
  • [44] A Convolutional Neural Network for Image Super-Resolution Using Internal Dataset
    Liu, Jing
    Xue, Yuxin
    Zhao, Shanshan
    Li, Shancang
    Zhang, Xiaoyan
    IEEE ACCESS, 2020, 8 : 201055 - 201070
  • [45] A residual convolutional neural network for polarimetric SAR image super-resolution
    Shen, Huanfeng
    Lin, Liupeng
    Li, Jie
    Yuan, Qiangqiang
    Zhao, Lingli
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 161 (161) : 90 - 108
  • [46] Dual path convolutional neural network for single image super-resolution
    Ma Z.-J.
    Lu H.
    Dong Y.-R.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (06): : 2089 - 2097
  • [47] License Plate Image Super-Resolution Based on Convolutional Neural Network
    Yang, Yang
    Bi, Ping
    Liu, Ying
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 723 - 727
  • [48] Super-Resolution for Noisy Images via Deep Convolutional Neural Network
    Zhang, Xinyan
    Gao, Peng
    Liu, Sunxiangyu
    Zhao, Kongya
    Li, Guitao
    Yin, Liuguo
    UNCONVENTIONAL OPTICAL IMAGING, 2018, 10677
  • [49] Instant multicolor super-resolution microscopy with deep convolutional neural network
    Songyue Wang
    Chang Qiao
    Amin Jiang
    Di Li
    Dong Li
    Biophysics Reports, 2021, 7 (04) : 304 - 312
  • [50] Geomagnetic reference map super-resolution using convolutional neural network
    Ma, Xiaoyu
    Zhang, Jinsheng
    Li, Ting
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)