Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution

被引:0
|
作者
Jianning Li
Christina Gsaxner
Antonio Pepe
Dieter Schmalstieg
Jens Kleesiek
Jan Egger
机构
[1] University Medicine Essen (AöR),Institute for AI in Medicine (IKIM)
[2] Graz University of Technology,Institute of computer graphics and vision
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them suboptimal for spatially sparse data. In this paper, we propose a CNN model based on sparse tensors for efficient processing of high-resolution shapes represented as binary voxel occupancy grids. In contrast to a dense CNN that takes the entire voxel grid as input, a sparse CNN processes only on the non-empty voxels, thus reducing the memory and computation overhead caused by the sparse input data. We evaluate our method on two clinically relevant skull reconstruction tasks: (1) given a defective skull, reconstruct the complete skull (i.e., skull shape completion), and (2) given a coarse skull, reconstruct a high-resolution skull with fine geometric details (shape super-resolution). Our method outperforms its dense CNN-based counterparts in the skull reconstruction task quantitatively and qualitatively, while requiring substantially less memory for training and inference. We observed that, on the 3D skull data, the overall memory consumption of the sparse CNN grows approximately linearly during inference with respect to the image resolutions. During training, the memory usage remains clearly below increases in image resolution—an ×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 8$$\end{document} increase in voxel number leads to less than ×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 4$$\end{document} increase in memory requirements. Our study demonstrates the effectiveness of using a sparse CNN for skull reconstruction tasks, and our findings can be applied to other spatially sparse problems. We prove this by additional experimental results on other sparse medical datasets, like the aorta and the heart. Project page at https://github.com/Jianningli/SparseCNN.
引用
收藏
相关论文
共 50 条
  • [21] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [22] A Dual-Scale Convolutional Neural Network for Super-Resolution
    Liu, Jing
    He, Shuai
    Xue, Yuxin
    Zhang, Xiaoyan
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [23] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [24] A Deep Convolutional Neural Network with Selection Units for Super-Resolution
    Choi, Jae-Seok
    Kim, Munchurl
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1150 - 1156
  • [25] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [26] ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR NOISY IMAGE SUPER-RESOLUTION
    Bao, Wenbo
    Zhang, Xiaoyun
    Yan, Shangpeng
    Gao, Zhiyong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4038 - 4042
  • [27] Image super-resolution with an enhanced group convolutional neural network
    Tian, Chunwei
    Yuan, Yixuan
    Zhang, Shichao
    Lin, Chia-Wen
    Zuo, Wangmeng
    Zhang, David
    NEURAL NETWORKS, 2022, 153 : 373 - 385
  • [28] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [29] Single Image Super-Resolution Based on Convolutional Neural Network
    Shi Ziteng
    Wang Zhiren
    Wang Rui
    Ren Fuquan
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)
  • [30] Video Super-Resolution Using Wave-Shape Network
    Wu, Yanan
    Kamata, Sei-ichiro
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 132 - 136