A determinant approach to q-Bessel polynomials and applications

被引:0
|
作者
Mumtaz Riyasat
Subuhi Khan
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
-Bessel polynomials; 2; -Bessel polynomials; -Eulerian type polynomials; Extended ; -Eulerian type-Bessel polynomials; Determinant definition; Primary 11B73; 11B83; Secondary 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
The article aims to introduce the q-analogues of well known Bessel polynomials and to study their important properties. A new recurrence relation and determinant definition for the q-Bessel polynomials are derived. A hybrid form of q-Bessel polynomials namely, the extended q-Eulerian type-Bessel polynomials are introduced and are characterized by means of series expansion and determinant definition. As an special case, the characterizations for the extended q-Euler–Bessel polynomials are given. Further, the 2Dq-Bessel polynomials are introduced by means of generating function and determinant definition and some identities for these q-polynomials are proved.
引用
收藏
页码:1571 / 1583
页数:12
相关论文
共 50 条
  • [31] Modified q-Bessel functions and q-Macdonald functions
    Olshanetskii, MA
    Rogov, VBK
    SBORNIK MATHEMATICS, 1996, 187 (9-10) : 1525 - 1544
  • [32] A Determinant Expression for the Generalized Bessel Polynomials
    Yang, Sheng-liang
    Zheng, Sai-nan
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [33] An analog of Titchmarsh’s theorem for the q-Bessel transform
    Achak A.
    Daher R.
    Dhaouadi L.
    Loualid E.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2019, 65 (1) : 1 - 13
  • [34] A few properties of the third Jackson q-Bessel function
    J. L. Cardoso
    Analysis Mathematica, 2016, 42 : 323 - 337
  • [35] Radii problems for normalized q-Bessel and Wright functions
    Toklu, Evrim
    Aktas, Ibrahim
    Orhan, Halit
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 203 - 223
  • [36] A few properties of the third Jackson q-Bessel function
    Cardoso, J. L.
    ANALYSIS MATHEMATICA, 2016, 42 (04) : 323 - 337
  • [37] The Continuous Wavelet Transform for a q-Bessel Type Operator
    Pandey, C. P.
    Saikia, Jyoti
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [38] Sampling theorems associated with biorthogonal q-Bessel functions
    Annaby, M. H.
    Mansour, Z. S.
    Ashour, O. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
  • [39] BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS
    Aktas, Ibrahim
    Orhan, Halit
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 355 - 369
  • [40] SPECTRAL ZETA-FUNCTIONS FOR Q-BESSEL EQUATIONS
    KVITSINSKY, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1753 - 1764