Improving premise structure in evolving Takagi-Sugeno neuro-fuzzy classifiers

被引:22
|
作者
Almaksour A. [1 ]
Anquetil E. [1 ]
机构
[1] INSA de Rennes/UMR IRISA, 35043 Rennes, Avenue des Buttes de Coesmes
关键词
Incremental learning; Neuro-fuzzy; Takagi-Sugeno;
D O I
10.1007/s12530-011-9027-0
中图分类号
学科分类号
摘要
We present in this paper a new method for the design of evolving neuro-fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno neuro-fuzzy model. We propose a modification on the premise structure in this model and we provide the necessary learning formulas, with no problem-dependent parameters. We demonstrate by the experimental results the positive effect of this modification on the overall classification performance. © 2011 Springer-Verlag.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 50 条
  • [41] Fractional Order Unknown Inputs Fuzzy Observer for Takagi-Sugeno Systems with Unmeasurable Premise Variables
    Djeddi, Abdelghani
    Dib, Djalel
    Azar, Hmad Taher
    Abdelmalek, Salem
    MATHEMATICS, 2019, 7 (10)
  • [42] Robust Zonotopic Observer Design: Avoiding Unmeasured Premise Variables for Takagi-Sugeno Fuzzy Systems
    Pourasghar, Masoud
    Nguyen, Anh-Tu
    Guerra, Thierry-Marie
    IFAC PAPERSONLINE, 2021, 54 (04): : 68 - 73
  • [43] Implementation of the Direct Power Control of a Doubly Fed Induction Generator by using a Takagi-Sugeno Neuro-Fuzzy Inference System
    Jacomini, Rogerio Vani
    Bim, Edson
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 852 - 857
  • [44] Avoiding Unmeasured Premise Variables in Designing Unknown Input Observers for Takagi-Sugeno Fuzzy Systems
    Anh-Tu Nguyen
    Pan, Juntao
    Guerra, Thierry-Marie
    Wang, Zhenhua
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 79 - 84
  • [45] A fuzzy output regulator for Takagi-Sugeno fuzzy models
    Castillo-Toledo, B
    Meda-Campaña, JA
    Titli, A
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2003, : 310 - 315
  • [46] Toward Improving the Fuzzy KNN Algorithm Based on Takagi-Sugeno Fuzzy Inference System
    Ramirez, Eduardo
    Melin, Patricia
    Prado-Arechiga, German
    FUZZY INFORMATION PROCESSING 2020, 2022, 1337 : 237 - 252
  • [47] FUZZY CONTROL VIA IMPERFECT PREMISE MATCHING APPROACH FOR DISCRETE TAKAGI-SUGENO FUZZY SYSTEMS WITH MULTIPLICATIVE NOISES
    Chang, Wen-Jer
    Kuo, Che-Pin
    Ku, Cheung-Chieh
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (05): : 949 - 957
  • [48] Stabilization conditions of Takagi-Sugeno Fuzzy systems based on the Fuzzy Lyapunov Functions under the Imperfect Premise Matching
    Kim, Ho Jun
    Park, Jin Bae
    Joo, Young Hoon
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5643 - 5647
  • [49] Genetic Takagi-Sugeno fuzzy reinforcement learning
    Yan, XW
    Deng, ZD
    Sun, ZQ
    PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC'01), 2001, : 67 - 72
  • [50] Output stabilization of Takagi-Sugeno fuzzy systems
    Yoneyama, J
    Nishikawa, M
    Katayama, H
    Ichikawa, A
    FUZZY SETS AND SYSTEMS, 2000, 111 (02) : 253 - 266