Improving premise structure in evolving Takagi-Sugeno neuro-fuzzy classifiers

被引:22
|
作者
Almaksour A. [1 ]
Anquetil E. [1 ]
机构
[1] INSA de Rennes/UMR IRISA, 35043 Rennes, Avenue des Buttes de Coesmes
关键词
Incremental learning; Neuro-fuzzy; Takagi-Sugeno;
D O I
10.1007/s12530-011-9027-0
中图分类号
学科分类号
摘要
We present in this paper a new method for the design of evolving neuro-fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno neuro-fuzzy model. We propose a modification on the premise structure in this model and we provide the necessary learning formulas, with no problem-dependent parameters. We demonstrate by the experimental results the positive effect of this modification on the overall classification performance. © 2011 Springer-Verlag.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 50 条
  • [31] Neuro-fuzzy Takagi Sugeno observer for fault diagnosis in wind turbines
    Perez-Perez, Esvan-Jesus
    Puig, Vicenc
    Lopez-Estrada, Francisco-Ronay
    Valencia-Palomo, Guillermo
    Santos-Ruiz, Ildeberto
    IFAC PAPERSONLINE, 2023, 56 (02): : 3522 - 3527
  • [32] Stability of Takagi-Sugeno fuzzy systems
    Ustoglu, Ilker
    ICINCO 2006: Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics: INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION, 2006, : 213 - 216
  • [33] Flexible Takagi-Sugeno fuzzy systems
    Cpalka, K
    Rutkowski, L
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1764 - 1769
  • [34] Observers for Takagi-Sugeno fuzzy systems
    Bergsten, P
    Palm, R
    Driankov, D
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01): : 114 - 121
  • [35] On Stability of Takagi-Sugeno Fuzzy Systems
    Fan, Donghong
    Song, Lixia
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 3, 2009, : 263 - +
  • [36] Analytical Structure of a General Takagi-Sugeno Fuzzy PID Controller
    Raj, Ritu
    Mohan, B. M.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 591 - 596
  • [37] Stabilization of positive Takagi-Sugeno systems with unmeasurable premise variables
    Zaidi, Ines
    Tadeo, Fernando
    Chaabane, Mohamed
    2015 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2015, : 71 - 78
  • [38] State estimation of Takagi-Sugeno systems with unmeasurable premise variables
    Ichalal, D.
    Marx, B.
    Ragot, J.
    Maquin, D.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (05): : 897 - 908
  • [39] FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi-Sugeno Fuzzy Models
    Lughofer, Edwin David
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1393 - 1410
  • [40] Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    Kim, Min-Soeng
    Kim, Chang-Hyun
    Lee, Ju-Jang
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (05): : 1006 - 1023